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Introduction

In the present thesis, we give an introduction to the generalized Murray von Neumann dimension
developed by W. Lück and apply the results to describe the theory of L2-homology and L2-Betti
numbers for von Neumann algebras, developed by A. Connes and D. Shlyakhtenko.
The contents of the thesis is summarized in the following paragraph.

Summary: The thesis contains three chapters, where the major part of the theory is contained
in the first and the third chapter. The second chapter serves as an interlude, connecting the first
and the third chapter.

In the first chapter, we introduce the generalized Murray von Neumann dimension, as defined
by W. Lück in [Lüc98]. This notion of dimension is defined on the category of modules over a finite
von Neumann algebra M 1, and extends the classical notion of Murray- von Neumann dimension
of finitely generated projective modules. Following Lück, [Lüc97] and [Lüc98], we prove that this
generalized dimension inherits many of the properties of the classical Murray- von Neumann di-
mension. The most important of these properties, can be found in Theorem 1.4.7.
The reader interested in applications of this dimension theory, other than L2-Betti numbers for
von Neumann algebras, may find these in [Lüc02]. Lastly, we discuss the so-called induction func-
tor associated with a pair of von Neumann algebras (one contained in the other), and proof that
this functor preserves the extended dimension. (see e.g. Theorem 1.5.1)

In the second chapter, we first recapitulate some basic facts on Hochschild homology which
will be needed in order to describe the theory of L2-homology for von Neumann algebras. Next we
give a brief introduction to group von Neumann algebras and define the notion of group homology
(and in particular L2-homology) for a discrete group G. We end the chapter with a discussion of
the induction-functor in the context of group von Neumann algebras.

The third chapter contains the primary material of this thesis; namely a presentation of the
theory of L2-Homology and L2-Betti numbers for finite von Neumann algebras, as defined by A.
Connes and D. Shlyakhtenko in [CS03]. The L2-homology of a finite von Neumann algebra M ,
is defined as the Hocschild homology H∗(M ,M ⊗̄M op) and because of the choice of coefficients,
these groups all become left modules over the von Neumann algebra tensor product M ⊗̄M op.
Using the generalized Murray- von Neumann dimension, the Hochschild modules therefore all
have a dimension over M ⊗̄M op; and the L2-Betti numbers of M is defined as this sequence of
dimensions. Next we turn towards the development of computational results and, in particular,
we prove the so-called compression formula, (Theorem 3.2.8) which gives a relation between the
L2- Betti numbers of a finite factor M and the L2-Betti numbers of the corner-algebra pM p
associated with a projection p ∈ M . Finally, we give a more detailed description of the zero’th
and first L2-Betti number and compute these in some special cases.

1See e.g. Definition 1.1.10
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About this text: Reading this project requires basic knowledge of homological algebra. The
relevant theory of homological algebra can, for instance, be found in [CE], [Wei] and/or [Fox].
Moreover, some knowledge about operator algebras — and especially von Neumann algebras — is
required; in particular in relation to the contents of Chapter 3. We refer to [KR1] and [KR2] for
background information on operator algebras.
On the last page, a list of notation can be found. It does not contain all notation used in the text,
but shall be considered as a supplement for the text, containing short descriptions of parts of the
notation which appear without further explanation in the main text. When a result (not developed
by the author) is presented, we will give a reference to the (if possible) original source. This will
be done in a bracket placed just before the statement, in the Lemma, Proposition or Theorem in
question, is given. However, if the results are classical, we will sometimes give a general reference
in the beginning of the relevant section.
Despite the fact that the thesis has only one author, most of the text is written in plural form. So,
when the word ”we” appear (as it already has), it is to be interpreted as the reader and author in
conjunction.

Throughout the text, unless explicitly stated otherwise, the following assumptions will be
made:

• All vector spaces are assumed to be over the complex numbers.

• All algebras are assumed to be associative.

• The symbol ⊗ will be used to denote algebraic tensor products (of modules, algebras, etc.)
while the symbol ⊗̄ will be used to denote completed tensor products. (of Hilbert spaces,
von Neumann algebras, etc.)

Finally, I would like to thank Ryszard Nest and Erik Christensen, for patiently listening to all my
questions and helping me find answers to them.

Copenhagen, February 2005
David Kyed.
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Chapter 1

The generalized Murray- von
Neumann Dimension

In this chapter we introduce the notion of Murray- von Neumann dimension of a finitely generated
projective module over a finite von Neumann algebra M . Subsequently, we generalize it to cover
all modules over M and prove that many of the attractive properties carry over to this generalized
dimension function.
We start out, by presenting some basic results of module theory, which will be needed in the
sequel.

1.1 Module theory

Let R be a unital ∗-ring of characteristic zero and let Mod(R) denote the category of left R-
modules, with morphisms being the R-linear maps. We denote by 1 the unit in R and we will
often also use the symbol 1 to denote the identity homomorphism on a given object in Mod(R).
Unless otherwise stated, throughout this section all modules are left modules and the term ”ideal”
will always mean left ideal.

Lemma 1.1.1. If P is a finitely generated projective R-module, then P is isomorphic to the image
of an idempotent R-homomorphism p : Rn → Rn for some n ∈ N.

Proof. Since P is finitely generated and projective, P is isomorphic to a direct summand P ′ in
Rn for some n ∈ N. That is, Rn = P ′ ⊕Q′ for a suitable submodule Q′ in Rn.
We now define p : Rn → Rn by

p(x, y) = (x, 0) for x ∈ P ′, y ∈ Q′.

Clearly p has the desired properties.

Remark 1.1.2. Any morphism f : Rn → Rm is given by right-multiplication with a (unique)
matrix A ∈Mn,m(R). To see this, we consider the natural basis e1, . . . , en for Rn, where

ei := (0, . . . , 0, 1, 0, . . . , 0), (the 1 in the i’th position)

and define the k’th row in A to be the image f(ek). Then f(ek) = ekA for all k ∈ {1, . . . , n} and
since (e1, . . . , en) is a basis, the two maps must agree everywhere.
Clearly the relations f(ek) = ekA, k = 1, . . . , n, determines A completely.

Proposition 1.1.3. If M is an R-module and p : M →M an idempotent R-homomorphism, then
M = pM ⊕ (1− p)M .

7



8 CHAPTER 1. THE GENERALIZED MURRAY- VON NEUMANN DIMENSION

Proof. Using that p is idempotent, it is straightforward to check that

M 3 x 7−→ (px, (1− p)x) ∈ pM ⊕ (1− p)M,

is an isomorphism.

Lemma 1.1.1 has an inverse.

Lemma 1.1.4. If P is a projective R-module and q : P → P is an idempotent R-homomorphism,
then qP is a projective R-module.

Proof. By Proposition 1.1.3, we have P = qP ⊕ (1− q)P and since P is projective there exists a
free R-module F , which contains P as a direct summand. Then F also contains qP as a direct
summand and we conclude that qP is projective.

Definition 1.1.5. The ring R is said to be semi-hereditary if all finitely generated (left) ideals
in R are projective as R-modules. More generally, a projective R-module M is said to be semi-
hereditary, if all finitely generated R-submodules of M are projective.

Proposition 1.1.6. [CE] The following statements are equivalent

(i) The ring R is semi-hereditary.

(ii) Every projective module over R is semi-hereditary.

Proof .

(ii)⇒ (i): Since R is free (and hence projective) as an R-module and since R is semi hereditary
as an R-module if, and only if, it is semi hereditary as a ring, the implication follows.

(i)⇒ (ii): Since every projective module is isomorphic to a submodule in a free module and
since projectivity is preserved under finite direct sums, it suffices to prove the following claim:

Each finitely generated submodule of a free module is the direct sum of a finite number of
modules, each of which is isomorphic to a finitely generated ideal in R.

Proof of claim: Assume M to be a finitely generated submodule in the free module F and let
(xi)i∈I be a basis for F .
Since M is finitely generated, we can choose a minimal n ∈ N and i1, . . . , in ∈ I such that
M ⊆ spanR{xi1 , . . . , xin} =: F ′.
We proceed by induction on the number n.
If n = 1 we have F ′ = Rxi1 ' R (since {xi|i ∈ I} is a basis) and hence the submodule M is
isomorphic to a finitely generated R-submodule of R; that is, to a finitely generated ideal in R,
which is projective by assumption.
Assume now, inductively, that the claim is proven for some fixed n ∈ N and consider the case
n+ 1. That is, assume that

F ′ = spanR{xi1 , . . . , xin , xin+1} = spanR{xi1 , . . . , xin} ⊕Rxin+1 .

Then the R-linear map f : spanR{xi1 , . . . , xin} ⊕Rxin+1 −→ R given by

(v, rxin+1) 7−→ r ∈ R,



1.1. MODULE THEORY 9

maps M onto a finitely generated ideal J in R, which by assumption is projective. We then have
a short-exact sequence

0 // ker(f) ∩M ⊆ // M
f // J // 0 ,

which splits (since J is projective) so that M ' (ker(f) ∩M)⊕ J . Since ker(f) ∩M is a finitely
generated (because M is finitely generated) submodule in spanR{xi1 , . . . , xin}, the induction hy-
pothesis applies.

Our interest in semi-hereditary rings comes from fact that finite von Neumann algebras are semi-
hereditary, as we shall see later. (Corollary 1.3.21) At this point, we need some more algebraic
constructions.

Definition 1.1.7. For an R-module M , we define the dual module M∗ := HomR(M,R), with
R-module structure given by

(rf)(x) = f(x)r∗,

for r ∈ R, f ∈ HomR(M,R) and x ∈M .

At first glance, the action of R on the dual module may look strange, but this definition will
be justified later. (see e.g. Corollary 1.4.8 and Definition 1.3.5)

Definition 1.1.8. Let M be an R-module and let K be an R-submodule of M . We then define
the (algebraic) closure of K in M as

K
M

:= {x ∈M | ∀f ∈ HomR(M,R) : (K ⊆ ker(f)) ⇒ (x ∈ ker(f))}.

When there is no possibility of confusion, about which module the closure is performed relative to,
we will sometimes denote the closure of K by K to simplify notation and sometimes by K

alg
to

distinguish it from topological closures. The submodule K is said to be closed in M when K
M

= K.
We also define

• TM := {x ∈M | ∀f ∈ HomR(M,R) : f(x) = 0} = {0}
M
.

• PM := M/TM .

The algebraic closure of modules has the following properties.

Proposition 1.1.9. Let L,M and N be modules over R. Then the following holds.

(i) If L ⊆M ⊆ N then L
N ⊆M

N
.

(ii) If f : M → N is a homomorphism and N is projective, then ker(f) is closed in M .

Proof .
(i) Let x ∈ L

N
be given and consider any ϕ ∈ HomR(N,R) that vanishes on M . Then ϕ

especially vanishes on L ⊆M and since x ∈ LN we get ϕ(x) = 0. Hence x ∈MN
.

(ii) Assume first that N is free and choose a basis (xi)i∈I . Let x ∈ ker(f)
M

be given. We want
to show that f(x) = 0. Since (xi)i∈I is a basis, every element y ∈ N has a unique expansion∑
i∈I ri(y)xi,

1 and hence we get a family of homomorphisms ϕi : N → R by setting

ϕi(y) = ϕi(
∑
j∈I

rj(y)xj) := ri(y).

1With only finitely many ri(y)’s non-zero
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Note, that this family separates points in N . That is, if ϕi(y) = 0 for all i ∈ I then y = 0. For
any i ∈ I, we have ϕi ◦ f ∈ HomR(M,R) and vanishing on ker(f) and hence ϕi(f(x)) = 0. Thus
f(x) = 0. This proves (ii) in the special case when N is free.

Assume now, that N is projective and consider an x ∈ ker(f)
M

. Assume moreover that f(x) 6= 0.
Since N is projective, it is a direct summand in a free module F , which therefore can be written
as F = N ⊕Q for some module Q. By the argument above, there exists a ϕ ∈ HomR(F,R) such
that ϕ(f(x), 0) 6= 0. But then

M 3 ξ 7−→ ϕ(f(ξ), 0) ∈ R,

is a homomorphism, which obviously vanishes on ker(f) and is nonzero on x — contradicting the
choice of x.
Hence f(x) = 0, and ker(f)

M
= ker(f).

1.1.1 The generalized Murray- von Neumann dimension

In this section we define the Murray- von Neumann dimension of a finitely generated projec-
tive module over a finite von Neumann algebra. Following Lück ([Lüc97],[Lüc98]), we generalize
the notion of Murray- von Neumann dimension to the category of all modules over a finite von
Neumann algebra. We shall restrict our selves to the class of finite von Neumann algebras, who
possesses a normal, faithful, tracial state. Hence the following definition.

Definition 1.1.10. Throughout the text (unless explicitly stated otherwise) the term finite von
Neumann algebra, will mean a von Neumann algebra M with the following properties:

• The unit 1 is a finite projection in M .

• M possesses a normal, faithful, tracial state.

Actually the first condition in Definition 1.1.10 is redundant, which can be seen in the following
way. If M is any von Neumann algebra with a normal, faithful, tracial state and p ∈ M is a
projection equivalent to 1, then there exists a partial isometry V ∈ M with V ∗V = 1 and V V ∗ = p.
Hence

τ(1− p) = τ(V ∗V − V V ∗) = τ(V ∗V )− τ(V V ∗) = 0,

and since τ is faithful we get p = 1.

Let M be finite von Neumann algebra with unit 1 and let τ be a fixed normal, faithful, tracial
state on M . The trace τ gives rise to a tracial functional τn on Mn(M ), by setting

τn({aij}ni,j=1) :=
n∑
i=1

τ(aii).

By computing τn on a matrix-product of the form A∗A, one easily checks that τn is positive and
faithful. (But not a state, since it takes the value n on the unit matrix.) Given a finitely generated
projective M -module P , we know by Lemma 1.1.1 and Remark 1.1.2 that P is (isomorphic to)
M nA for some idempotent matrix A ∈ Mn(M ). We now define the Murray- von Neumann
dimension of P as

dimM (P ) := τn(A) ∈ [0,∞[

Of course we have to check that this is well-defined

Lemma 1.1.11. The Murray- von Neumann dimension of P is independent of the choice of
idempotent matrix.
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For the proof, some notation will be convenient: For a matrix B ∈ Mn,m(M ) we denote by
RB the M -homomorphism from M n to Mm, multiplying from the right with B.

Proof. Let A,A′ be idempotents in Mn(M ) and Mm(M ) respectively and assume that
ϕ : M nA → MmA′ is an isomorphism of M -modules. By extending the matrices A and A′ by
zeros, (this does not effect their traces) we may assume that m = n.
Define ϕ̃ : M n → M n by

M nA⊕M n(1−A) 3 (x, y) 7−→ (ϕ(x), 0) ∈ M nA′ ⊕M n(1−A′)

and ϕ̂ : M n → M n by

M nA′ ⊕M n(1−A′) 3 (x, y) 7−→ (ϕ−1(x), 0) ∈ M nA⊕M n(1−A)

Then both ϕ̃ and ϕ̂ are M -linear maps and hence of the form RX̃ and RX̂ for some matrices
X̃, X̂ ∈Mn(M ). Using that A and A′ are idempotent, a direct computation shows that

RA′ = RX̂AX̃ and RA = RX̃X̂A

Since τn is a trace, we get

τn(A′) = τn(X̂AX̃) = τn(X̃X̂A)) = τn(A),

as desired.

We now want to extend the Murray- von Neumann dimension to arbitrary M -modules. This
is done in the following way.

Definition 1.1.12. Let M be any M -module. We then define

dim′
M (M) := sup{dimM (P ) | P is a finitely generated projective submodule of M} ∈ [0,∞].

As it stands, it is not completely obvious that dim′
M (·) actually extends the Murray- von

Neumann dimension, but as we will see in Section 1.4 this is the case.
Before we are able to investigate the extended dimension function, a rather large amount of theory
is required. First we need some results on finite von Neumann algebras.

1.2 Miscellaneous on finite von Neumann algebras

In this section we collect some general results concerning finite von Neumann algebras.
Throughout the section, M denotes a finite von Neumann algebra with unit 1, equipped with a
fixed normal, faithful, tracial state τ . Let L2(M ) denote the Hilbert space completion of M , in
the GNS-construction with respect to τ . That is, the completion of M with respect to the (norm
‖ · ‖2 induced by the) inner product (a, b) 7→ τ(b∗a) =: 〈a |b〉. Let η : M → L2(M ) denote the
inclusion M ⊆ L2(M ). Since τ is faithful, the GNS-representation πτ of M on L2(M ) is faithful
and πτ (M ) is closed in the strong operator topology on B(L2(M )) since τ is normal. (see e.g.
[KR2] Corollary 7.1.7) Thus, πτ is a ∗-algebra-isomorphism of von Neumann algebras from M to
πτ (M ) and we will therefore often suppress the reference to πτ and just consider M as acting on
L2(M ).
We denote by M op the opposite algebra of M and by τop the trace on M op given by

τop(mop) := τ(m) for mop ∈ M op.

Everything said above about (M , τ) carry over to the pair (M op, τop) and (as with M ) we identify
M op with its image under the GNS-representation, with respect to τop, on L2(M op, τop) =:
L2(M op). The algebraic tensor product M ⊗M op is naturally represented on L2(M )⊗̄L2(M op)
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and we denote by M ⊗̄M op the strong closure of M ⊗M op in B(L2(M )⊗̄L2(M op)).
Recall that the ∗-algebra-isomorphism class of M ⊗̄M op, does not depend on the representation
space L2(M )⊗̄L2(M op), but only on the ∗-algebra-isomorphism classes of M and M op. (see e.g.
[KR2] Theorem 11.2.10) The normal states τ and τop on M and M op respectively, gives rise to
a normal state τ ⊗ τop on M ⊗̄M op (see e.g. [KR2] Proposition 11.2.7), with the property that

τ ⊗ τop(m⊗ nop) = τ(m)τop(nop) for all m ∈ M , nop ∈ M op.

Because both τ and τop are faithful traces, the tensor-state τ ⊗ τop is actually a faithful trace on
M ⊗̄M op, as we will prove later. (Proposition 1.2.9).
Before doing this, we introduce the so-called conjugation operator on L2(M ).

1.2.1 The conjugation operator

In this section we introduce the conjugation operator J on L2(M ) and study the relationship
between M ′ and M . The presented results are classical and can be found, for instance, in [Dix]
and/or [KR2].

Lemma 1.2.1. The map J : η(M ) → η(M ) given by η(a) 7→ η(a∗) extends to an anti-linear
isometry J : L2(M ) → L2(M ) with the property that J2 = 1.

Proof. Obviously J is anti-linear on η(M ) and since τ is a trace it follows that

‖η(a)‖2
2 = τ(a∗a) = τ(aa∗) = ‖η(a∗)‖2

2 = ‖J(a)‖2
2.

Hence J : η(M ) → η(M ) is isometric and extends therefore to an anti-linear isometry (also de-
noted by J) on L2(M ). Since a∗∗ = a for all a ∈ M , it is clear that J2 = 1.

As indicated, we shall refer to J as the conjugation operator on L2(M ).

Lemma 1.2.2. The conjugation operator J on L2(M ) has the following properties:

1. For all x, y ∈ L2(M ) we have 〈Jx |Jy〉 = 〈y |x〉.

2. We have JMJ ⊆ M ′, where the commutant is taken relative to B(L2(M )).

Proof. By continuity, we only need to check the relation in 1. on the dense subspace η(M ). For
x = η(a) and y = η(b), we have

〈Jx |Jy〉 = 〈η(a∗) |η(b∗)〉 = τ(ba∗) = τ(a∗b) = 〈η(b) |η(a)〉 = 〈y |x〉.

To proof the second claim we fix arbitrary a, b, c ∈ M . Then

c(JbJ)(η(a)) = c(Jb)(η(a∗)) = cJ(η(ba∗)) = η(cab∗)
(JbJ)c(η(a)) = JbJ(η(ca)) = J(η(ba∗c∗)) = η(cab∗).

Since η(M ) is dense in L2(M ), this shows that JbJ commutes with every c ∈ M and since b was
arbitrary we now have JMJ ⊆ M ′.

Consider an arbitrary a ∈ M . On the dense subspace η(M ), this operator acts as
η(x) 7→ η(ax). Associated with a, there is another natural linear operator on η(M ), namely

η(x) Ra7−→ η(xa).
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We now want to see that Ra is bounded with respect to the norm on L2(M ). Since Jη(1) = η(1)
we have

Ra(η(x)) = η(xa) = x(Ja∗J)η(1) = (Ja∗J)xη(1) = Ja∗J(η(x)),

where the third equality follows from Lemma 1.2.2. From this it follows that Ra = Ja∗J |η(M )

and hence that Ra is bounded. It therefore extends to a bounded operator, also denoted Ra, on
L2(M ). Note, that a 7→ Ra is linear and that Ra∗ = R∗a.
Our next aim is to show that M ′ = {Ra|a ∈ M }. We already proved the inclusion ”⊇” in
Lemma 1.2.2, since for each a ∈ M we have Ra = Ja∗J . From this equation it also follows that
{Ra|a ∈ M } is weakly closed in B(L2(M )). To prove the opposite inclusion, some more work is
required. In the following we will use the symbol La to denote the continuous extension, of the
map η(m) 7→ η(am), to L2(M ). This is the operator we until now have identified with a and this
identification will be reactivated after the proof of Corollary 1.2.7. Hopefully, this notation will
help clarify the arguments below.

Definition 1.2.3. For any x ∈ L2(M ) we define L0
x : η(M ) → L2(M ) by setting L0

x(η(m)) :=
Rmx and R0

x : η(M ) → L2(M ) by setting R0
x(η(m)) := Lmx.

Note, that both L0
x and R0

x are densely defined unbounded (in general) operators and that
L0
x = Lx|η(M ) and R0

x = Rx|η(M ), whenever x ∈ η(M ).
Also note, that if (xn)n∈N is a sequence in M such that ‖η(xn)−x‖2 −→

n→∞
0, then for any m ∈ M

we have
L0
x(η(m)) = Rm(x) = lim

n
Rm(η(xn)) = lim

n
(η(xnm)) = lim

n
Lxn

(η(m)).

A similar formula holds for R0
x, by an analogous computation.

The reason for the uppercase zero is that we now show that Lx and Rx are closable operators and
we wish to reserve the symbols Lx and Rx to denote their closures. To see that Lx is closable, we
need to check that the closure of its graph

{(η(m), L0
xη(m))|m ∈ M } ⊆ L2(M )⊕ L2(M ),

is the graph of some (unbounded) operator. For this it suffices to see, that if (η(an))n∈N ⊆ η(M )
is null-sequence and (L0

xη(an))n∈N converges to z, then z must be zero. To see this, we consider
any m ∈ M . Then

|〈z |η(m)〉| = lim
n
|〈L0

xη(an) |η(m)〉|

= lim
n
|〈Ran

x |η(m)〉|

= lim
n
|〈x |Ra∗nη(m)〉|

= lim
n
|〈x |Lm(η(a∗n))〉|

≤ lim
n
‖x‖2‖Lm‖‖η(a∗n)‖2 (‖Lm‖ being the operator-norm)

= lim
n
‖x‖2‖Lm‖‖η(an)‖2 −→ 0.

Thus, z is orthogonal to the dense subset η(M ) and is therefore zero.
In the same way we see that R0

x is closable and we denote by Lx and Rx the closure of L0
x and R0

x

respectively.

Lemma 1.2.4. If T ∈ {Ra|a ∈ M }′ and x ∈ L2(M ) is a vector such that Lx is bounded, then
also LTx is bounded and TLx = L(Tx). In particular T = LT (η(1)).

Proof. For m ∈ M we have

TLx(η(m)) = TRmx = RmTx = L0
(Tx)η(m),
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and since L0
(Tx) agrees with the bounded operator TLx on the dense subspace η(M ), we con-

clude that LTx is bounded and equal to TLx. Since L1 is the identity on L2(M ) we have
T = L(Tη(1)).

Proposition 1.2.5. The following holds.

{Ra|a ∈ M }′ = {Lx|Lx is bounded } and {La|a ∈ M }′ = {Rx|Rx is bounded }

Proof. We show the first equality. By the above lemma, every T ∈ {Ra|a ∈ M }′ equals LT (η(1))

and the inclusion ”⊆” follows. Conversely, if Lx is bounded and a ∈ M , then for any m ∈ M we
get

LxRa(η(m)) = Lx(η(ma)) = R(ma)x = RaRmx = RaLx(η(m)),

and hence Lx ∈ {Ra|a ∈ M }′.
The second equality is proven similarly, using the obvious variant of Lemma 1.2.4 for operators in
{La|a ∈ M }′.

Lemma 1.2.6. If x, y ∈ L2(M ) such that Lx and Ry are both bounded, then Lx and Ry commutes.

Proof. Since both Lx and Ry are bounded, it suffices to check that they commute on the dense
subspace η(M ). Choose a sequence (yn)n∈N ∈ M such that ‖y−η(yn)‖2 −→

n→∞
0. For any m ∈ M

we have

LxRy(η(m)) = Lx(lim
n
η(myn))

= lim
n
Lx(η(myn))

= lim
n
Rmyn(x)

= lim
n
Ryn

Rm(x)

= lim
n
RynLx(η(m))

= RyLx(η(m)),

and the claim follows.

From this, the desired equality between {La|a ∈ M }′ and {Rb|b ∈ M } follows.

Corollary 1.2.7. We have

{Lx|Lx is bounded } = {La|a ∈ M } and {Ry|Ry is bounded } = {Rb|b ∈ M },

and hence
{La|a ∈ M }′ = {Rb|b ∈ M }.

Proof. Lemma 1.2.6 and Proposition 1.2.5 in conjunction with the Double Commutant Theorem,
gives

{Lx|Lx is bounded} ⊆ {Ry|Ry is bounded}′ = {La|a ∈ M },

and hence {Lx|Lx is bounded} = {La|a ∈ M }. Similarly we get

{Ry|Ry is bounded} = {Rb|b ∈ M },
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and (using Proposition 1.2.5) we conclude that

{Rb|b ∈ M } = {Ry|Ry is bounded} = {La|a ∈ M }′.

Remark 1.2.8. By what is proven above, the map a 7→ Ja∗J is a ∗-preserving, bijective and
linear map between M and M ′. But for a, b ∈ M we have

J(ab)∗J = Jb∗a∗J = (Jb∗J)(Ja∗J),

so that the map is product-reversing. Hence, if we consider the map from M op to M ′ given by
aop 7→ Ja∗J , we get a ∗-algebra-isomorphism.

With the results above at our disposal, we can now prove the promised properties of the
tensor-state τ ⊗ τop.

Proposition 1.2.9. The normal tensor-state τ ⊗ τop : M ⊗̄M op → C is a faithful trace.

Proof. We first show that τ ⊗ τop is a trace. Since

τ ⊗ τop(x⊗ yop) = τ(x)τop(yop) for all x ∈ M , y ∈ M op,

the restriction of τ ⊗ τop to M ⊗M op is tracial.
Consider any x, y ∈ M ⊗̄M op and choose bounded nets (xi)i∈I and (yj)j∈J in M ⊗M op, con-
verging strongly to x and y respectively. (The Kaplansky density Theorem)
Then, for any z ∈ M ⊗̄M op, the net (xiz)i∈I is bounded and converges weakly to xz and similarly
(zyj)j∈J is bounded and converges weakly to zy. Because τ⊗τop is normal, it is weakly continuous
on bounded sets (see e.g. [KR2] Prop. 7.4.5), and hence

τ ⊗ τop(xy) = lim
i
τ ⊗ τop(xiy)

= lim
i

lim
j
τ ⊗ τop(xiyj)

= lim
i

lim
j
τ ⊗ τop(yjxi)

= τ ⊗ τop(yx).

We now want to see that τ ⊗ τop is faithful. Set ξ0 := ητ (1) and ξop0 := ητop(1). For x⊗ yop ∈
M ⊗M op we have

τ ⊗ τop(x⊗ yop) = 〈xξ0 |ξ0〉〈yopξop0 |ξop0 〉 = 〈(x⊗ yop)(ξ0 ⊗ ξop0 ) |ξ0 ⊗ ξop0 〉.

Since both τ ⊗ τ and ωξ0⊗ξop0
: T 7→ 〈T (ξ0 ⊗ ξop0 ) |ξ0 ⊗ ξop0 〉 are normal states, we conclude that

τ ⊗ τop = ωξ0⊗ξop0
.

Assume now that x ∈ M ⊗̄M op with τ ⊗ τop(x∗x) = 0. Then

0 = ωξ0⊗ξop0
(x∗x) = 〈x(ξ0 ⊗ ξop0 ) |x(ξ0 ⊗ ξop0 )〉 = ‖x(ξ0 ⊗ ξop0 )‖2

2. (∗)

Let J denote the conjugation operator on L2(M ) and Jop the conjugation operator on L2(M op).
For any m ∈ M we have Jm∗Jξ0 = Rmξ0 = η(m) and hence we see that

X := {((JmJ)⊗ (JopnopJop))ξ0 ⊗ ξop0 |m ∈ M , n ∈ M op} = ητ (M )⊗ ητop(M op).

Since ητ (M ) is dense in L2(M ) and ητop(M op) is dense in L2(M op), it follows that X is dense
in L2(M )⊗L2(M op) — and hence in L2(M )⊗̄L2(M op).
Each element of the form (JmJ)⊗(JopnopJop) clearly commutes with M ⊗M op, (see e.g. Corol-
lary 1.2.7) and hence with the strong closure M ⊗̄M op.
We have now proven, that the vector ξ0 ⊗ ξop0 is cyclic for (M ⊗̄M op)′ and therefore separating
for M ⊗̄M op. Thus, the formula (∗) above implies x = 0, and hence τ ⊗ τop is faithful.
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Remark 1.2.10. In the preceding text, we have consequently used the inclusion-map η to distin-
guish between M and η(M ). To simplify notation, we will often suppress the map η in the future
and simply think of M as a subspace of L2(M ).

1.2.2 An isomorphism of Hilbert spaces

Because of the great importance of the tensor-product M ⊗̄M op in the theory of L2-homology for
von Neumann algebras, we will devote some time here to investigate an alternative description of
the GNS-construction for this tensor product, with respect to τ ⊗ τop. This will turn out useful
in some future proofs.
For x, y ∈ M we consider x⊗ yop ∈ M ⊗M op and the linear mapping

M 3 m � Ψx⊗yop
// τ(ym)x = 〈m |y∗〉x ∈ M .

The following holds.

Lemma 1.2.11. For each x⊗yop ∈ M ⊗M op, the linear operator Ψx⊗yop is bounded with respect
to the norm inherited from L2(M ).

Proof. For any m ∈ M we have

‖Ψx⊗yopm‖2
2 := 〈τ(ym)x |τ(ym)x〉

= |τ(ym)|2τ(x∗x)
= ‖x‖2

2|〈m |y∗〉|2

≤ ‖x‖2
2‖m‖2

2‖y∗‖2
2 (Cauchy-Schwartz)

= ‖x‖2
2‖y‖2

2‖m‖2
2,

where the last equality follows from the fact that τ is a trace, such that

‖y‖2
2 = τ(y∗y) = τ(yy∗) = ‖y∗‖2

2.

Since Ψx⊗yop is bounded, it extends by continuity to an operator, also denoted Ψx⊗yop , on
L2(M ). By construction of Ψx⊗yop , the map

M ×M op 3 (x, y) 7−→ Ψx⊗y ∈ B(L2(M ))

is bilinear and we therefore get a linear map

Ψ : M ⊗M op −→ B(L2(M )),

with the property that Ψ(x⊗ yop) = Ψx⊗yop .

Proposition 1.2.12. The linear map Ψ given by

M ⊗M op 3 x⊗ yop Ψ7−→ Ψx⊗yop ∈ FR(L2(M ))

is an isometry, when M ⊗M op is endowed with the norm inherited from L2(M )⊗̄L2(M op)) and
FR(L2(M )) (the finite-rank operators) is endowed with the Hilbert-Schmidt norm ‖ · ‖HS .

Proof. Let T =
∑n
i=1 xi ⊗ yop

i ∈ M ⊗M op be given and assume, without loss of generality, that
the vectors x1, . . . , xn are mutually orthogonal. Then

‖
∑
i

xi ⊗ yop
i ‖

2
2 =

∑
i,j

〈xi |xj〉〈yi |yj〉 =
∑
i

‖xi‖2
2‖yi‖2

2.
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Let (eα)α∈A be an orthonormal basis for L2(M ).
Computing the Hilbert-Schmidt norm of ΨT we get.

‖ΨT ‖2
HS := ‖

∑
i

Ψxi⊗yop
i
‖2

HS

:=
∑
α

‖
∑
i

Ψxi⊗yop
i
eα‖2

2

=
∑
α

‖
∑
i

〈eα |y∗i 〉xi‖2
2

=
∑
α

∑
i

|〈eα |y∗i 〉|2‖xi‖2
2 (since xi⊥xj .)

=
∑
i

‖xi‖2
2‖y∗i ‖2

2

=
∑
i

‖xi‖2
2‖yi‖2

2,

and the result follows.

Corollary 1.2.13. The map Ψ, from Proposition 1.2.12, extends to an isomorphism of Hilbert
spaces from L2(M )⊗̄L2(M op) to HS (L2(M )).

Proof. We first prove that M ⊗M op is dense in L2(M )⊗̄L2(M op). By construction,
L2(M ) ⊗ L2(M op) is dense in L2(M )⊗̄L2(M op), so it suffices to see that every element T in
L2(M )⊗L2(M op) is the limit (in L2(M )⊗̄L2(M op)-norm ) of a sequence from M ⊗M op.
By linearity of the inclusion M ⊗M op ⊆ L2(M )⊗L2(M op), we may assume that T = x⊗ y for
some x ∈ L2(M ) and y ∈ L2(M op). Then there exists sequences (xk)k∈N ⊆ M , (yop

k )k∈N ⊆ M op

such that
lim
k
‖xk − x‖2 = 0 and lim

k
‖yop
k − y‖2 = 0.

From this it follows that xk ⊗ yk −→
k→∞

x⊗ y, since

‖x⊗ y − xk ⊗ yop
k ‖

2
2 = 〈x⊗ y |x⊗ y〉 − 〈xk ⊗ yop

k |x⊗ y〉 − 〈x⊗ y |xk ⊗ yop
k 〉+ 〈xk ⊗ yop

k |xk ⊗ yop
k 〉

= ‖x‖2
2‖y‖2

2 + ‖xk‖2
2‖y

op
k ‖

2
2 − 〈xk |x〉〈yop

k |y〉 − 〈x |xk〉〈y |yop
k 〉 −→

k→∞
0

Hence M⊗M op is dense in L2(M )⊗̄L2(M op) and therefore the linear map Ψ extends isometrically
to

Ψ : L2(M )⊗̄L2(M op) −→ FR(L2(M ))
HS

.

We now note, that every rank-one operator on L2(M ) has the form Ψx⊗y for suitable x ∈ L2(M )
and y ∈ L2(M op) and by linearity it follows that Ψ maps L2(M )⊗L2(M op) onto FR(L2(M )).

Since FR(L2(M ))
HS

= HS (L2(M )), the claim follows.

Proposition 1.2.14. The Hilbert spaces L2(M , τ)⊗̄L2(M op, τop) and L2(M ⊗̄M op, τ ⊗ τop) are
isomorphic.

To simplify notation, we denote L2(M ⊗̄M op, τ ⊗ τop) by L2(M ⊗̄M op).

Proof. We view M ⊗ M op as a subspace of both L2(M )⊗̄L2(M op) and L2(M ⊗̄M op) in the
natural way. By the proof of Corollary 1.2.13, M⊗M op is dense in L2(M )⊗̄L2(M op) and a direct
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computation shows that the identity on M ⊗M op is an isometry between the two subspaces.
It is therefore sufficient to prove that M ⊗M op is dense in M ⊗̄M op with respect to the norm
inherited from L2(M ⊗̄M op). Let η denote the inclusion of M ⊗̄M op into L2(M ⊗̄M op).
Every element T in M ⊗̄M op ⊆ B(L2(M )⊗̄L2(M op)) is the strong operator limit of a net (Tα)
from M ⊗M op. Thus, for every ξ ∈ L2(M )⊗̄L2(M op) we have that Tαξ −→ Tξ.
If we choose ξ to be η(1⊗ 1), we get

η(Tα) = Tαη(1⊗ 1) −→ Tη(1⊗ 1) = η(T ),

and the proof is complete, since η(M ⊗̄M op) is dense in L2(M ⊗̄M op) by construction.

In the light of the above proposition, we often choose to identify L2(M )⊗̄L2(M op) with L2(M ⊗̄M op).

Proposition 1.2.15. [CS03] Let m ∈ M . The isomorphism Ψ : L2(M ⊗̄M op) ∼−→ HS (L2(M ))
intertwines the following four, pairwise commuting, actions.

1. The M -action T 7→ mT on HS (L2(M )) with the (extension of the) action

M ⊗M op 3 x⊗ yop 7−→ mx⊗ yop ∈ M ⊗M op,

on L2(M ⊗̄M op).

2. The M op-action T 7→ Tm on HS (L2(M )) with the (extension of the) action

M ⊗M op 3 x⊗ yop 7−→ x⊗ (ym)op ∈ M ⊗M op,

on L2(M ⊗̄M op).

3. The M op-action T 7→ Jm∗JT on HS (L2(M )) with the (extension of the) action

M ⊗M op 3 x⊗ yop 7−→ xm⊗ yop ∈ M ⊗M op

on L2(M ⊗̄M op).

4. The M -action T 7→ TJm∗J on HS (L2(M )) with the (extension of the) action

M ⊗M op 3 x⊗ yop 7−→ x⊗ (my)op ∈ M ⊗M op

on L2(M ⊗̄M op).

Proof. The pairwise commutativity of the actions follows from Corollary 1.2.7. The proofs of
1.,2.,3. and 4. are essentially identical, so we only prove the third here.
Put hm(T ) := (Jm∗J)T for T ∈ HS (L2(M )) and Hm(x⊗ yop) := (xm)⊗ yop

for x⊗ yop ∈ M ⊗M op and extend Hm to L2(M ⊗̄M op) by linearity and continuity. We need to
show that Ψ ◦Hm = hm ◦Ψ.
That is, commutativity of the following diagram.

HS (L2(M ))
hm // HS (L2(M ))

L2(M ⊗̄M op)

Ψ '

OO

Hm

// L2(M ⊗̄M op)

Ψ'

OO

For x⊗ yop ∈ M ⊗M op and ξ ∈ L2(M ) we get

hm(Ψ(x⊗ yop))(ξ) = Jm∗J(Ψ(x⊗ yop)ξ) = 〈ξ |y∗〉Jm∗Jx = 〈ξ |y∗〉xm = ΨHm(x⊗ yop)(ξ).

By linearity, this implies that Ψ ◦Hm and hm ◦Ψ agrees on the dense subspace M ⊗M op and by
continuity the two maps must agree everywhere.
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1.3 Hilbert modules

In this section we define the category of Hilbert modules associated with a fixed (finite) von
Neumann algebra M . As it turns out, this category is very ”similar” (to be specified later)
to the category of finitely generated projective modules over M and this similarity will be the
cornerstone, when proving the essential properties of the extended dimension function.
In the following M denotes a finite von Neumann algebra, endowed with a fixed, faithful, normal,
tracial state τ . We denote by L2(M ) the Hilbert space completion of M in the GNS-construction
with respect to τ and identify M with its (isomorphic) image under the GNS-representation on
L2(M ).
The algebra M acts diagonally on the direct sum of Hilbert spaces ⊕ni=1L

2(M ) =: L2(M )n, as

(x1, . . . , xn) 7−→ (ax1, . . . , axn), (a ∈ M )

and we denote this operator by diag(a). Note, that n = ∞ is allowed and in this case the direct
sum is to be interpreted as the usual l2-sum of Hilbert spaces.
Also note, that a 7→ diag(a) is a faithful, normal representation of M , since it is just the n-fold
amplification of the (faithful, normal) GNS-representation πτ of M . Hence diag(M ) is a von
Neumann algebra in B(L2(M )n).

Definition 1.3.1. A Hilbert module over M (or Hilbert M -module) is a pair (H , π), where H
is a Hilbert space and π is a (unital) representation of M on H , with the following property:
There exists a closed diag(M )-invariant subspace H ′ ⊆ L2(M )n and a unitary U : H → H ′

such that the following diagram commutes for every a ∈ M .

H
U //

π(a)

��

L2(M )n

diag(a)

��
H

U
// L2(M )n

The Hilbert M -module (H , π) is said to be finitely generated if H ′ can be chosen as a subspace
of L2(M )n for finite n ∈ N.
By a morphism between Hilbert modules (H , π) and (K , ρ) over M we shall mean a bounded
linear operator f : H → K which respects the actions of M . That is,

f(π(a)x) = ρ(a)f(x) for all a ∈ M and x ∈ H .

We will refer to such an operator as an M -equivariant operator and the space of M -equivariant
operators from (H , π) to (K , ρ) is denoted by HomFGHM

M (H ,K ) or B(H ,K )M .
Two Hilbert modules, (H , π) and (K , ρ), over M are said to be isomorphic if there exists a
unitary M -equivariant operator between them.
The category of finitely generated Hilbert M -modules is denoted FGHM(M )

Note, that if (H , π) is a Hilbert M -module, then π is automatically a normal representation
of M and hence π(M ) a von Neumann algebra in B(H ). We shall often omit the reference to
the representation π and simply speak of H as a Hilbert M -module. In the following, we shall
primarily be interested in finitely generated Hilbert M -modules. In the remark below, some easy
facts about these are collected.

Remark 1.3.2. Let n ∈ N and let K be a closed M -invariant subspace of L2(M )n and consider
the orthogonal projection p ∈ B(L2(M )n) onto K . Since K is M -invariant, the projection p
is an M -equivariant operator on L2(M )n. Thus, every finitely generated Hilbert M -module is
isomorphic to pL2(M )n for suitable n ∈ N and M -equivariant orthogonal projection p.
Note also, that if H1 and H2 are finitely generated Hilbert M -modules, then so is the direct sum
of Hilbert spaces H1 ⊕H2, with respect to the diagonal action.
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If f : (H1, 〈·|·〉1) → (H2, 〈·|·〉2) is a morphism of finitely generated Hilbert M -modules, then so
is the adjoint f∗ : (H2, 〈·|·〉2) → (H1, 〈·|·〉1). To see this, we fix an a ∈ M and arbitrary x ∈ H1

and y ∈ H2.
Then, if we suppress the ∗-algebra-homomorphisms from M to B(H1) and B(H2) respectively,
we get

〈x |(f∗a− af∗)y〉1 = 〈x |(f∗a)y〉1 − 〈x |(af∗)y〉1
= 〈fx |ay〉2 − 〈a∗x |f∗y〉1
= 〈a∗fx |y〉2 − 〈fa∗x |y〉2
= 〈(a∗f − fa∗)x |y〉2
= 0.

Thus, f∗a = af∗. In particular, if U is an M -equivariant unitary from H1 to H2 then also U∗ is
M -equivaraint and hence the notion of isomorphism in FGHM(M ) makes sense. (See also Remark
1.3.4 below)
If (H , π) is any Hilbert M -module and T ∈ B(H ) is a self-adjoint M -equivariant operator,
then also f(T ) is M -equivariant for any bounded Borel function f on σ(T ), since the space of
M -equivariant operators on H is equal to the von Neumann algebra π(M )′.

Example 1.3.3. By definition, L2(M )n is a Hilbert module over M when endowed with the di-
agonal action, and finitely generated exactly when n is finite.
In the following we will often suppress the the diagonal-notation diag(a), and simply write a(x1, . . . , xn)
in stead of diag(a)(x1, . . . , xn).
By the results of Section 1.2, the map M 3 m 7−→ ma ∈ M extends to an operator Ra in
B(L2(M ), L2(M ))M for every a ∈ M and we proved that the map

M op 3 a 7−→ Ra = Ja∗J ∈ B(L2(M ), L2(M ))M ,

is a ∗-algebra-isomorphism.
Thus, for n,m ∈ N and a matrix A ∈Mn,m(M ) the M -linear map RA : M n → Mm given by

(x1, . . . , xn)7−→(x1, . . . , xn)A,

extends to an operator (also denoted RA) in B(L2(M )n, L2(M )m)M and every element in
B(L2(M )n, L2(M )m)M arises in this way.
As in the case n = 1, we see that the map

Mn(M )op 3 Aop 7−→ RA ∈ B(L2(M )n)M ,

is a ∗-algebra-isomorphism.

Remark 1.3.4. By definition, the morphisms in FGHM(M ) is the bounded M -equivariant operators
and it is therefore natural to define an isomorphism in FGHM(M ) as an invertible M -equivariant
operator. We now prove, that this notion of isomorphism is equivalent to the one given in Defini-
tion 1.3.1.
So, let H and K be finitely generated Hilbert M -modules and assume f : H → K to be a
bijective M -equivariant operator and consider the polar decomposition f = V |f | of f . Then V is
an isometry from rg |f | to rg (f) = K . (see e.g. [MV] Proposition 18.18)
Since f is invertible so is f∗ (closed range theorem) and hence also f∗f is invertible. Thus

0 /∈ {
√
t|t ∈ σ(f∗f)} = σ(

√
f∗f) = σ(|f |),

and hence also |f | is invertible. Thus, V is an isometry from H to K . To see that V is M -
equivaraint, we let ξ ∈ H and a ∈ M be given. Then, if we suppress the ∗-homomorphisms from
M to B(H ) and B(K ) respectively, we get

aV (|f |x) = af(x) = f(ax) = V |f |(ax) = V a(|f |x), (for any x ∈ H )

and since rg (|f |) = H , we conclude that V is M -equivaraint.
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Having established the basic properties of Hilbert M -modules, we turn our attention towards
the category of finitely generated projective modules over M .

Definition 1.3.5. Let P be a finitely generated projective module over M . By an inner product
on P we mean a map 〈·|·〉 : P × P → M such that for α, β ∈ M and p, q, r ∈ P we have

1. 〈αp+ βq |r〉 = α〈p |r〉+ β〈q |r〉.

2. 〈p |q〉 = 〈q |p〉∗

3. 〈p |p〉 ∈ M+ and 〈p |p〉 = 0 only if p = 0.

4. The map P 3 p 7→ 〈·|p〉 ∈ HomM (P,M ) =: P ∗ is an isomorphism of M -modules.2

By a morphism between finitely generated projective M -modules, P and Q, with inner product we
shall simply mean an M -linear map. The set of morphisms from P to Q is denoted HomFGPIP

M (P,Q).
We denote by FGPIP(M ), the category of finitely generated projective M -modules with inner prod-
uct, which in this way becomes a full subcategory of the category of finitely generated projective
M -modules. The latter category, will be denoted FGP(M ).

Example 1.3.6. As an example of an object in FGPIP(M ), we can consider M n (for some n ∈ N)
endowed with the standard inner product 〈·|·〉st given by

〈(a1, . . . , an) |(b1, . . . , bn)〉st :=
n∑
i=1

aib
∗
i .

One easily checks, that 〈·|·〉st fulfills the requirements in Definition 1.3.5.
Unless otherwise mentioned, we always view M n as an element in FGPIP(M ) with respect to the
standard inner product.

In the following remark, we collect some easy facts concerning finitely generated projective
M -modules with inner product.

Remark 1.3.7. Consider a morphism f : (P1, 〈·|·〉1) → (P2, 〈·|·〉2) of finitely generated projective
modules with inner product. Just as in the case of Hilbert spaces, we get a (unique)3 adjoint
morphism f∗ : (P2, 〈·|·〉2) → (P1, 〈·|·〉1) by requiring that

〈f(x) |y〉2 = 〈x |f∗(y)〉1 for all x ∈ P1 and y ∈ P2.

Note, that if A ∈Mn,m(M ) and we consider the M -linear map RA : M n → Mm, then R∗A = RA∗
when both M n and Mm are endowed with their standard inner products.

If (P1, 〈·|·〉1), (P2, 〈·|·〉2) ∈ FGPIP(M ), then 〈·|·〉 : P1 ⊕ P2 given by

〈(p1, p2) |(q1, q2)〉 := 〈p1 |q1〉1 + 〈p2 |q2〉2,

is an inner product on P1 ⊕ P2. Thus FGPIP(M ) is stable under direct sums.
Unless otherwise mentioned, we always view P1 ⊕ P2 as an element in FGPIP(M ) with respect to
this inner product.
Note, that for any pair of objects P,Q ∈ FGPIP(M ) the morphisms HomFGPIP

M (P,Q) has the struc-
ture of a complex vector space, where the addition is pointwise and multiplication by scalars is
defined by

(λf)(x) := (λ1M )f(x).

In this language, the contents of Example 1.3.3 may be reformulated in the following way:
The map from HomFGPIP

M (M n,Mm) to HomFGHM
M (L2(M )n, L2(M )m) which extends a morphism by

continuity, is an isomorphism of vector spaces.
2See e.g. Definition 1.1.7
3Existence of f∗ follows from 4. and uniqueness follows from 3. in Definition 1.3.5.
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We adopt the following language from the theory of Hilbert spaces.

Definition 1.3.8. An endomorphism f in FGPIP(M ) is called self-adjoint if f∗ = f and an
isomorphism u is called unitary if u∗ = u−1.
An endomorphism f : (P, 〈·|·〉) −→ (P, 〈·|·〉) is called positive, if 〈f(x) |x〉 ∈ M+ for all x ∈ P .

The main goal of this section, is to prove that the categories FGPIP(M ) and FGHM(M ) are
actually equivalent categories. (see e.g. Section 1.3.1 below for a definition) To this end, we need
to define a potential equivalence between the two categories. This is done in the following way.

Consider an object (P, 〈·|·〉) in FGPIP(M ) and note that P is a complex vector space with
respect to the action λ ·x := (λ1)x. Since τ (the fixed trace on M ) is faithful the sesquilinear form
τ ◦ 〈·|·〉 is a scalar-valued inner product on P and by completing P with respect to the associated
norm, we get a Hilbert space. Following Lück (see e.g. [Lüc97]), we denote this Hilbert space by
ν(P, 〈·|·〉). When it is clear from the context which inner product P is endowed with, we shall
sometimes omit the reference to the inner product and simply denote the completion by ν(P ).
One easily checks that ν(M n, 〈·|·〉st) = L2(M )n, where the latter is the direct Hilbert-space sum
of n copies of L2(M ). We now want to turn ν(P, 〈·|·〉) into an Hilbert M -module and ν into a
functor.
Before doing so, we introduce some terminology from category theory which will be needed.

1.3.1 A bit of category theory

In this section we briefly introduce the notion of equivalence of functors and equivalence of cat-
egories and we prove the one result needed for our purposes. The reader who is familiar with
category theory may therefore skip this part. More details on categories, functors, equivalences of
categories, ect. can be found in [MacL].

Definition 1.3.9. Let C and D be categories and assume F and G to be covariant functors from
C to D.
A natural transformation from F to G is a family of morphisms αc : F (c) → G(c) (one for
each object in C), such that for any two objects c′, c′′ ∈ C and any morphism f ∈ MorC(c′, c′′) the
following diagram commutes

F (c′)
F (f) //

αc′

��

F (c′′)

αc′′

��
G(c′)

G(f)
// G(c′′)

A natural isomorphism from F to G is a natural transformation (αc)c∈Obj(C) from F to G, in
which each αc is an isomorphism. In this case (α−1

c )c∈Obj(C) is a natural isomorphism from G to
F and we say that F and G are naturally isomorphic. This is denoted by F ' G.

Definition 1.3.10. Let C and D be categories. By an equivalence from C to D, we mean a functor
F : C→ D, for which there exists a functor G : D→ C such that

• The composition F ◦G is naturally isomorphic to the identity functor idD on D.

• The composition G ◦ F is naturally isomorphic to the identity functor idC on C.

In this case, G is an equivalence from D to C and we say that C and D are equivalent.
If F ◦G = idD and G ◦F = idC, we say that C and D are isomorphic categories and F (respectively
G) is said to be an inverse of G (respectively F ).
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Proposition 1.3.11. [MacL] Let C be a category and assume that C0 is a full subcategory 4 of C,
with the property that each object c ∈ C is isomorphic to exactly one object c′ ∈ C0.
Then the inclusion functor I : C0 −→ C is an equivalence of categories.

Proof. Choose, for each object c ∈ C, the unique object c′ ∈ C0 isomorphic to it and an isomorphism
αc : c→ c′. If c ∈ C0 we choose αc = idc. Define G : C→ C0 on objects by setting G(c) := c′.
If c1, c2 ∈ C and f : c1 → c2 is a morphism, we define G(f) := αc2 ◦ f ◦ α−1

c1 : c′1 → c′2.
In this way G is turned into a functor (this is easily verified) from C to C0 and obviously we have
G ◦ I = idC0 . We now need to prove that I ◦G ' idC.
For any c1, c2 ∈ C and any morphism f : c1 → c2 we have the following commutative diagram

c1

f

��

αc1

∼
// c′1

αc2◦f◦α
−1
c1

��
c2 αc2

∼ // c′2

Since I ◦ G(c1) = c′1, I ◦ G(c2) = c′2 and I ◦ G(f) = αc2 ◦ f ◦ α−1
c1 , this exactly means that

I ◦G ' idC.

We aim to prove that (for any finite von Neumann algebra M ) the categories FGHM(M ) and
FGPIP(M ) are equivalent. In the light of Proposition 1.3.11, our strategy for this is to find two
isomorphic subcategories C0 ⊆ FGPIP(M ) and D0 ⊆ FGHM(M ), satisfying the requirements in
Proposition 1.3.11. This is done in the following section.

1.3.2 The equivalence of FGHM(M ) and FGPIP(M )

Let M be a finite von Neumann algebra, endowed with a fixed normal, faithful, tracial state τ .
For every finitely generated projective M -module with inner product (P, 〈·|·〉), we defined (in the
last lines of Section 1.3) ν(P, 〈·|·〉) to be the Hilbert space completion of P , with respect to the
scalar-valued inner product τ ◦ 〈·|·〉. This construction has the following properties.

Lemma 1.3.12. [Lüc97] Consider the sets {M n|n ∈ N} and {L2(M )n|n ∈ N}, as full subcate-
gories in FGPIP(M ) and FGHM(M ) respectively.
For every n,m ∈ N and every M -linear map f : M n → Mm, f extends to a bounded M -
equivariant operator ν(f) : L2(M )n → L2(M )m.
In this way ν is turned into a covariant functor from {M n|n ∈ N} to {L2(M )n|n ∈ N} and the
following holds.

(i) ν : {M n|n ∈ N} → {L2(M )n|n ∈ N} is an isomorphism of categories.

(ii) For any n,m ∈ N, the map ν : HomFGPIP
M (M n,Mm) → HomFGHM

M (L2(M )n, L2(M ))m) is an
isomorphism of vector spaces.

(iii) ν preserves adjoints. I.e. for any morphism f : M n → Mm we have ν(f∗) = ν(f)∗.

Almost all of Lemma 1.3.12 is already proven in the preceding part of this section, but since
the arguments are spread over four pages we put together the details.

Proof. We already noted that ν(M n, 〈·|·〉st) = L2(M )n and hence ν is well-defined on objects.
As shown in Remark 1.1.2, any morphism f : M n → Mm is given by right multiplication with
a unique matrix A ∈ Mn,m(M ). In Example 1.3.3 we saw that every such morphism may be

4I.e. MorC0 (c′, c′′) = MorC(c′, c′′) for all objects c′, c′′ ∈ C0
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extended by continuity to an operator ν(f) : L2(M )n → L2(M )m and that every M -equivariant
operator arises in this way.
Since ”extension by continuity” clearly preserves composition of morphisms and extends the iden-
tity morphism to the identity morphism, it follows that ν is a covariant functor.
Part (ii) of the lemma is proven in Example 1.3.3. (See also Remark 1.3.7)
We now define µ(L2(M )n) := M n and for a morphism F : L2(M )n → L2(M )m we define
µ(F ) := F |Mn . Then, by what is already proven, µ is a functor and by construction an inverse to
ν.
We now just need to prove that ν preserves adjoints. Consider any morphism f : M n → Mm.
The inner product on L2(M )n is given by (extension of) τ ◦〈·|·〉st on M n and from this it follows,
that ν(f∗) and ν(f)∗ must agree on the dense subspace M n ⊆ L2(M )m and by continuity there-
fore everywhere. (A more detailed argument for this fact will be given in the proof of Theorem
1.3.17 part (iii))

Consider a matrix A ∈ Mn,m(M ). To this point we have used the symbol RA to denote the
map RA : M n → Mm, as well as its extension to L2(M )n. In the rest of this chapter, we reserve
the symbol RA to denote the map RA : M n → Mm and denote by ν(RA) its extension to L2(M )n.

Observation 1.3.13. Consider a finitely generated projective M -module P . By Lemma 1.1.1, P
is isomorphic to M np for some n ∈ N and some idempotent matrix p ∈Mn(M ).
Since p is idempotent, the extension ν(Rp) : L2(M )n → L2(M )n is idempotent and has therefore
closed range and since ν(Rp) is M -equivariant its range is M -invariant. Thus, rg (ν(Rp)) is a
finitely generated Hilbert M -module. Let π denote the (M -equivariant) projection in B(L2(M )n)
onto rg (ν(Rp)) and let q ∈ Mn(M ) be the unique self-adjoint and idempotent (see e.g. Example
1.3.3) matrix such that ν(Rq) = π. We now show that

M np = M nq.

We have
ν((idMn −Rq)Rp) = (idL2(M )n − π)ν(Rp) = 0,

and, by Lemma 1.3.12, this implies (idMn −Rq)Rp = 0. Thus,

M np = rg(Rp) ⊆ ker(idMn −Rq) = rg(Rq) = M nq.

Similarly we have
ν((idMn −Rp)Rq) = (idL2(M )n − ν(Rp))π = 0,

and thus M nq ⊆ M np.
This proves the following.

Any finitely generated projective M -module is isomorphic to M nq for a suitable n ∈ N and
idempotent self-adjoint matrix q ∈Mn(M ).

Since the trace τn : Mn(M ) −→ C is faithful, this implies that the (non-extended )dimension
function dimM (·) is faithful. That is, if P is a finitely generated projective M -module then
dimM (P ) = 0 if, and only if, P = {0}.

Lemma 1.3.14. Every finitely generated projective M -module admits an inner product.

Proof. Since any finitely generated projective M -module, is isomorphic to M np for some n ∈ N
and some self-adjoint idempotent p ∈ Mn(M ), it suffices to prove the claim for modules of this
type. We now claim, that the restriction of 〈·|·〉st to M np is an inner product.
Clearly the restriction of 〈·|·〉st fulfills 1.,2. and 3. in Definition 1.3.5, so we only have to check
that M np 3 x 7−→ 〈·|x〉st ∈ (M np)∗ is an isomorphism.
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To see that x 7→ 〈·|x〉st is surjective, we need to prove that every M -linear map f : M np → M
has the form f(x) = 〈x |x0〉st for a suitable x0 ∈ M np.
The map f ◦ Rp : M n → M is M -linear and hence of the form f ◦ Rp(x) = 〈x |y〉st for some
y ∈ M n. For x ∈ M np we have

f(x) = f ◦Rp(Rpx) = 〈Rpx |y〉st = 〈x |R∗py〉st = 〈x |Rp∗y〉st = 〈x |Rpy〉st,

and hence x0 := Rpy has the desired property. A similar argument shows that x 7→ 〈·|x〉st is
injective.

As the proposition below shows, the inner product on a finitely generated projective M -module,
constructed in the proof of Lemma 1.3.14, is essentially unique.

Proposition 1.3.15. [Lüc97] Let P1 and P2 be finitely generated projective M -modules, with inner
products 〈·|·〉1 and 〈·|·〉2 respectively. Then (P1, 〈·|·〉1) and (P2, 〈·|·〉2) are unitarily isomorphic if,
and only if, P1 and P2 are isomorphic as M -modules.

Proof. The ”only if” statement is clear.
Assume that P1 and P2 are isomorphic as M -modules. We start with some reductions.
By Observation 1.3.13, we may assume, that P1 = M np for some n ∈ N and self-adjoint idempo-
tent p ∈ Mn(M ). Since P1 and P2 are isomorphic, we may also assume that P1 = P2 and that
〈·|·〉2 is the standard inner product 〈·|·〉st restricted to P2 = M np ⊆ M n. The problem is now
reduced to finding a unitary isomorphism from (P1, 〈·|·〉1) to (P1, 〈·|·〉st).
Define f : P1 → P1 be requiring that

〈x |y〉1 = 〈fx |y〉st for all x, y ∈ P1.

(f is the adjoint of the identity id : (P1, 〈·|·〉st) → (P1, 〈·|·〉1).)
Note, that for any x ∈ P1 we have 〈fx |x〉st = 〈x |x〉1 ∈ M+. Furthermore, f is self-adjoint with
respect to 〈·|·〉st, since for any x, y ∈ P1 we have

〈x |fy〉st = 〈fy |x〉∗st = 〈y |x〉∗1 = 〈x |y〉1 = 〈fx |y〉st.

Let ι denote the inclusion P1 ⊆ M n, and consider the morphism f ′ := ι ◦ f ◦ Rp : M n → M n.
Using that Rp is self-adjoint and idempotent, one easily checks that f ′ is self-adjoint and positive
with respect to 〈·|·〉st. Hence the operator ν(f ′) on L2(M )n is positive (in the operator sense)
and it therefore has a square root inside B(L2(M )n). Note that

√
ν(f ′) is again M -equivariant

by Remark 1.3.2. Define g := Rp ◦ µ(
√
ν(f ′)) ◦ ι : P1 → P1, where µ is the inverse functor to ν

defined in the proof of Lemma 1.3.12. Using that
√
ν(f ′) is self-adjoint, it is not hard to check

that g is self-adjoint with respect to 〈·|·〉st and we now claim that g2 = f .
To see this, we first prove that µ(

√
ν(f ′)) ◦ Rp = µ(

√
ν(f ′)). By construction of f ′ we have

f ′ ◦Rp = f ′ and hence ν(f ′) ◦ ν(Rp) = ν(f ′). Thus, for any N ∈ N and α1, . . . , αN ∈ C we have

( N∑
k=1

αk(ν(f ′))k
)
◦ ν(Rp) =

N∑
k=1

αk(ν(f ′))k. (∗)

Since
√

0 = 0, the function t 7→
√
t on σ(ν(f ′)) can be approximated uniformly by polynomials

without constant terms and from the identity (∗) we conclude that
√
ν(f ′) ◦ ν(Rp) =

√
ν(f ′).

Applying the functor µ now gives µ(
√
ν(f ′)) ◦Rp = µ(

√
ν(f ′)).

With this identity established, we are now in position to prove that g2 = f .
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Choose any x ∈ P1 = M np. We then have

g2(x) = Rp ◦ µ(
√
ν(f ′)) ◦ ι ◦Rp ◦ µ(

√
ν(f ′)) ◦ ι(x)

= Rp ◦ µ(
√
ν(f ′)) ◦Rp ◦ µ(

√
ν(f ′))(x)

= Rp ◦ (µ(
√
ν(f ′)

√
ν(f ′)))(x)

= Rp ◦ µ(ν(f ′))(x)
= Rp ◦ f ′(x)
= Rp(f ◦Rp(x))
= Rp(fx) (since x ∈ M np)
= f(x), (since f(x) ∈ M np)

and hence g2 = f . Thus, for given x, y ∈ P1 we have

〈gx |gy〉st = 〈g∗gx |y〉st = 〈g2x |y〉st = 〈fx |y〉st = 〈x |y〉1.

Since f is bijective so is g and hence g is a unitary from (P1, 〈·|·〉1) to (P1, 〈·|·〉st). This completes
the proof.

Corollary 1.3.16. Every finitely generated projective M -module possess an inner product, which
is unique up to (unitary) isomorphism.

Proof. The statement is just the combination of Lemma 1.3.14 and Proposition 1.3.15.

We are now ready to prove the promised equivalence between FGPIP(M ) and FGHM(M ).

Theorem 1.3.17. [Lüc97] For any (P1, 〈·|·〉1) and (P2, 〈·|·〉2) in FGPIP(M ) and any morphism
f : P1 → P2, the completions ν(P1) and ν(P2) are finitely generated Hilbert modules over M and
f extends to a bounded M -equivariant operator ν(f) : ν(P1) → ν(P2).
In this way, ν is turned into a covariant functor from FGPIP(M ) to FGHM(M ).
Furthermore

(i) ν is an equivalence of categories.

(ii) For any P1, P2 ∈ FGPIP(M ), the map ν : HomFGPIP
M (P1, P2) → HomFGHM

M (ν(P1), ν(P2)) is an
isomorphism of vector spaces.

(iii) ν preserves adjoints. I.e. for any morphism f in FGPIP(M ) we have ν(f∗) = ν(f)∗.

Proof.

Proof of (i): By Proposition 1.3.15 and Observation 1.3.13, it suffices to check that
ν((M np, 〈·|·〉st)) ∈ FGHM(M ) for any n ∈ N and any self-adjoint idempotent p ∈Mn(M ).
Consider the extension ν(Rp) : L2(M )n → L2(M )n and note that ν(Rp)L2(M )n ∈ FGHM(M )
since ν(Rp) is an M -equivariant projection.
When M np = Rp(M n) is endowed with the norm induced by the scalar-valued inner product
τ ◦ 〈·|·〉st, the inclusion Rp(M n) ⊆ ν(Rp)L2(M )n is an isometric M -embedding of vector spaces.
Since Rp(M n) is dense in ν(Rp)L2(M )n, we get ν(Rp(M n), 〈·|·〉st) = ν(Rp)L2(M )n ∈ FGHM(M ).
We now prove that any FGPIP-morphism f : (M np, 〈·|·〉st) → (Mmq, 〈·|·〉st) can be extended to
an FGHM-morphism ν(f) : ν(Rp)L2(M )n → ν(Rq)L2(M )m.
Denote by ι the inclusion Mmq ⊆ Mm and consider the FGPIP-morphism

g := ι ◦ f ◦Rp : M n → Mm.
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By Lemma 1.3.12, g extends to an FGHM-morphism ν(g) : L2(M )n → L2(M )m.
For x ∈ M n we have

ν(g)(xp) = (ι ◦ f ◦Rp)(xp) = f(xp) ∈ M nq.

From this it follows that

• ν(g) maps ν(Rp)L2(M )n into ν(Rq)L2(M )m.

• The restriction ν(f) := ν(g)
∣∣∣
ν(Rp)L2(M )n

: ν(Rp)L2(M )n → ν(Rq)L2(M )m extends f .

Since ”extension by continuity” respects composition of morphisms and the identity morphism
extends to the identity morphism, we see that ν defined in this way is a covariant functor.
Before proving that ν is an equivalence of categories, we prove (ii) and (iii).

Proof of (ii): We need to see that

ν : HomFGPIP
M (P1, P2) → HomFGHM

M (ν(P1), ν(P2)),

is an isomorphism of vector spaces, for arbitrary (P1, 〈·|·〉1), (P2, 〈·|·〉2) ∈ FGPIP(M ).
Since ν extends morphisms by continuity, it follows that ν is C-linear and injective and hence we
just have to prove that ν is surjective.
As above, it suffices to consider the case where P1 = (M np, 〈·|·〉st) and P2 = (Mmq, 〈·|·〉st). So,
we need to see that every M -equivariant operator F : ν(Rp)L2(M )n → ν(Rq)L2(M )m arises as
the extension of an M -linear map f : M np → Mmq. To see this, we let ι denote the inclusion
ν(Rq)L2(M )m ⊆ L2(M )m and consider the operator

G := ι ◦ F ◦ ν(Rp) : L2(M )n → L2(M )m.

By Lemma 1.3.12, there exists a (unique) matrix A ∈Mn,m(M ) such that ν(RA) = G.
For x ∈ M n we have

RA(xp) = G(xp) = ι ◦ F ◦ ν(Rp)(xp) = F (xp) ∈ rg (F ) ⊆ ν(Rq)L2(M )m. (†)

But RA(xp) ∈ Mm and hence RA maps M np into ν(Rq)L2(M )m ∩ Mm = Mmq. Thus, we
can consider the restriction of RA to M np as a morphism f : M np → M nq. The extension
ν(f) : ν(Rp)L2(M )n → ν(Rq)L2(M )m coincides with F , since the computation (†) shows that
the two maps agree on the dense subspace M np.
This concludes the proof of (ii).

Proof of (iii): By Proposition 1.3.15, it suffices to consider modules of the form (M np, 〈·|·〉st)
and (Mmq, 〈·|·〉st) where p, q are idempotent self-adjoint matrices in Mn(M ) and Mm(M ) re-
spectively. We now consider a morphism f : M np→ Mmq and wish to prove that ν(f∗) = ν(f)∗.
Let x ∈ M np and y ∈ Mmq be given and let 〈·|·〉 denote the inner product on both L2(M )n and
L2(M )m. Then

〈x |(ν(f∗)− ν(f)∗)y〉 = 〈x |ν(f∗)y〉 − 〈x |ν(f)∗y〉
= 〈x |f∗y〉 − 〈ν(f)x |y〉
= 〈x |f∗y〉 − 〈fx |y〉
= τ(〈x |f∗y〉st − 〈fx |y〉st)
= 0.

Hence (ν(f∗)− ν(f)∗)y is orthogonal to the dense subspace M np and thus zero. Since this holds
for any y in the dense subspace Mmq ⊆ ν(M nq, 〈·|·〉st), we conclude that ν(f∗)−ν(f)∗ = 0. This
completes the proof of (iii).
We now prove that ν is an equivalence of categories.
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Proof of (i) continued: Consider the full subcategory

C := {(M np, 〈·|·〉st) | n ∈ N, p a self-adjoint and idempotent matrix in Mn(M )},

in FGPIP(M ). On C we consider the equivalence relation ”being unitarily isomorphic to” and for
each isomorphism class we choose a representative.
Denote by C0 the full subcategory in FGPIP(M ), consisting of those representatives. By construc-
tion C0 has the following property:

For every c ∈ FGPIP(M ) there exists a unique c′ ∈ C0 such that c ' c′.

Consider
D0 := {ν(Rp)L2(M )n | (M np, 〈·|·〉st) ∈ C0 }

as a full subcategory of FGHM(M ). We now want to prove that

For every x ∈ FGHM(M ) there exists a unique x′ ∈ D0 such that x ' x′.

Any object x in FGHM(M ) is (unitarily) isomorphic to πL2(M )n for some n ∈ N and an M -
equivariant projection π : L2(M )n → L2(M )n.
By Lemma 1.3.12, there exists an idempotent self-adjoint matrix p ∈ Mn(M ) with ν(Rp) = π.
Then (M np, 〈·|·〉st) ∈ FGPIP(M ) and thus there exists a unique k ∈ N and self-adjoint idempotent
matrix q ∈ Mk(M ) such that (M kq, 〈·|·〉st) ∈ C0 and (M kq, 〈·|·〉st) is unitarily isomorphic to
(M np, 〈·|·〉st). This implies, that also their completions, ν(M kq) and ν(M np), are unitarily
isomorphic and thus

x ' ν(Rp)L2(M )n ' ν(Rq)L2(M )k ∈ D0.

This shows, that any object in FGHM(M ) is isomorphic to one in D0 and we now have to prove that
this object is unique. So, consider arbitrary M np,Mmq ∈ C0 and assume that U : ν(Rp)L2(M )n →
ν(Rq)L2(M )m is a unitary M -equivariant operator. By what is already proven, U |Mnp is an iso-
morphism from M np to Mmq and by Proposition 1.3.15 it now follows that Mmq and M np are
unitarily isomorphic. By construction of C0 we therefore have M np = M nq.

Applying Proposition 1.3.11, we now have that FGPIP(M ) is equivalent to C0 and that FGHM(M )
is equivalent to D0. Hence it suffices to show that C0 and D0 are equivalent.
Denote by ν0 the restriction of ν to C0. We then define a functor µ0 from D0 to C0 by setting
µ0(ν(Rp)L2(M )n) := M np and for a morphism F : ν(Rp)L2(M )n → ν(Rq)L2(M )m we define
µ0(F ) := F |Mnp. (That µ0 is a functor follows from (ii)) Clearly µ0 ◦ ν0 = idC0 and ν0 ◦µ0 = idD0

and hence C0 and D0 are isomorphic categories. In particular equivalent.

Definition 1.3.18. By Theorem 1.3.17, ν : FGPIP(M ) −→ FGHM(M ) is an equivalence of cate-
gories. We now choose a fixed functor ν−1 : FGHM(M ) → FGPIP(M ) such that ν ◦ ν−1 ' idFGHM

and ν−1 ◦ ν ' idFGPIP.
If H ∈ FGHM(M ), we define its Murray-von Neumann dimension over M as dimM (ν−1(H )) and
we denote it dimM (H ). (Compare e.g. to [Lüc02] Section 1.1)
This is well-defined by Theorem 1.3.17.

Remark 1.3.19. As our notation is set up, a minor ambiquity arises: Consider (P1, 〈·|·〉1) and
(P2, 〈·|·〉2) in FGPIP(M ) and an M -equivariant operator F : ν(P1) → ν(P2).
Then the symbol ν−1(F ) carries the following two meanings

(1) The unique map f : P1 → P2 such that ν(f) = F , provided by the isomorphism of vec-
torspaces from Theorem 1.3.17 part (ii).
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(2) The morphism ν−1(F ) : ν−1(ν(P1)) → ν−1(ν(P2)).

However, since ν−1 ◦ ν ' idFGPIP we have isomorphisms αP1 : ν−1(ν(P1)) → P1 and
αP2 : ν−1(ν(P2)) → P2 making the following diagram commutative

ν−1(ν(P1))
ν−1(F ) //

∼αP1

��

ν−1(ν(P2))

∼ αP2

��
P1

f
// P2

We will therefore not develop notational distinction between the two maps, but distinguish between
them by specifying there domain- and range-space, if necessary.

Lemma 1.3.20. Let n,m, l ∈ N and consider a sequence of M -homomorphisms

M n f−→ Mm g−→ M l, (∗)

and the induced sequence

L2(M )n
ν(f)−→ L2(M )m

ν(g)−→ L2(M )l. (∗∗)

If (∗∗) is exact, then so is (∗).

Proof. Since f = ν(f)|Mn and g = ν(g)|Mm , it is clear that g ◦ f = 0.
Let π denote the projection onto ker(ν(g)) and let ρ denote the projection onto ker(ν(f))⊥. Then

T := ν(f)|ρL2(M )n : ρL2(M )n −→ πL2(M )m,

is a bounded, invertible, M -equivariant operator. Thus the same is true for T−1 and by Theorem
1.3.17 we know that T−1 maps πL2(M )m ∩Mm into ρL2(M )n ∩M n.
Consider any x ∈ Mm and assume that gx = 0. Then

x ∈ ker(ν(g)) ∩Mm = πL2(M )m ∩Mm,

and hence y := T−1x ∈ ρL2(M )n ∩M n. We now get

fy = ν(f)y = ν(f)T−1x = x,

and the proof is complete.

We are now able to prove the promised semi-heriditaryness of finite von Neumann algebras.

Corollary 1.3.21. [Lüc97] Any finite von Neumann algebra M is semi-hereditary. That is, every
finitely generated left ideal in M is projective, when considered as an M -module.
Hence every projective M -module is semi-hereditary.

Proof. Let J be any finitely generated left ideal in M and choose a suitable n ∈ N and a
homomorphism f : M n → M with J as its range. If ker(f) is a direct summand in M n, then
J ' M n/ ker(f) is isomorphic to a direct summand in M n and therefore projective. Hence we
aim to show that ker(f) is a direct summand in M n.
Applying the functor ν, we get ν(f) : L2(M )n → L2(M ) and we denote by p, the orthogonal
projection in B(L2(M )n) onto ker(ν(f)). Since ν(f) is M -equivariant, the kernel ker(ν(f)) is
invariant under the action of M and hence p is M -equivariant. By Lemma 1.3.12 there exists
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a self-adjoint idempotent matrix q ∈ Mn(M ), such that ν(Rq) = p. Since Rq is idempotent, its
range is a direct summand in M n and thus it suffices to show that rg (Rq) = ker(f).
To see this, we consider the (by construction) exact sequence

L2(M )n
ν(Rq)−→ L2(M )n

ν(f)−→ L2(M ),

and by applying Lemma 1.3.20, we get exactness of the sequence

M n Rq−→ M n f−→ M .

This means precisely that ker(f) = rg(q) and the proof is complete.
The last claim in Corollary 1.3.21 follows directly from Proposition 1.1.6.

1.4 Properties of the generalized dimension function

Having constructed the functor ν and established some of its properties, we are now able to prove
some practical results about the extended dimension function defined in section 1.1.1.
The advantage of the work in the previous section is, that we have the opportunity to transport
problems about finitely generated projective modules, into the Hilbert-module-framework — this,
for instance, allows us to make use of topological arguments.
As usual, M denotes a finite von Neumann algebra, endowed with a fixed normal, faithful, tracial
state τ .
As we saw in Section 1.3, we get a ∗-algebra-isomorphism

ϕ : Mn(M )op −→ HomFGHM
M (L2(M )n, L2(M )n) =: B(L2(M )n)M ,

which, on a matrix Aop, simply extends RA : M n → M n by continuity.
The trace τ on M gives rise to a positive, faithful and tracial functional τn on Mn(M )op given by

τn({aij}op
i,j) =

n∑
i=1

τ(aii).

Since ϕ is a ∗-algebra-isomorphism, the functional σn := τn ◦ ϕ−1 on B(L2(M )n)M is faithful,
positive and tracial.

Lemma 1.4.1. The functional σn := τn ◦ ϕ−1 : B(L2(M )n)M → C is normal.

Proof. Let η denote the inclusion M ⊆ L2(M ) and denote by ξi the vector (0, 0, . . . , 0, η(1), 0, . . . , 0)
in L2(M )n, where η(1) is in the i’th position.
We now claim that

σn(T ) =
n∑
i=1

〈Tξi |ξi〉.

To see this, we consider T = ϕ({aij}op) ∈ B(L2(M )n)M and calculate:

n∑
i=1

〈Tξi |ξi〉 =
n∑
i=1

〈η(ai1), · · · , η(ain) |ξi〉

=
n∑
i=1

τ(aii)

= τn(ϕ−1(T ))
= σn(T ).
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So, σn is a finite sum of vector-states and hence normal.

Remark 1.4.2. If P is a finitely generated projective M -module and p ∈ Mn(M ) is an idem-
potent matrix such that P ' M np, then dimM (P ) = σn(ν(Rp)), where σn is the trace from
Lemma 1.4.1. Conversely, if π : L2(M )n → L2(M )n is an M -equivariant projection, such that
rg (ν−1(π)) ' P , then dimM (P ) = σn(π).

Proposition 1.4.3. [Lüc98] Let P be a finitely generated projective M -module and let K be any
submodule of P . Then the following holds.

1. The algebraic closure K
alg

is a direct summand in P . Hence both K
alg

and P/K
alg

are
finitely generated and projective.

2. We have dimM (K
alg

) = dim′
M (K).

Proof. Let Ω := {Pi|i ∈ I} be the family of all finitely generated projective submodules of K.
Then Ω is directed by inclusion, since for any P1, P2 ∈ Ω the submodule in K, generated by P1

and P2, is obviously finitely generated and hence projective since P is semi-hereditary.
Choose an inner product 〈·|·〉i on Pi for each i ∈ I and let ιi be the inclusion Pi ⊆ P . Choose also
an inner product 〈·|·〉 on P . Applying the functor ν, we get (for each i ∈ I) a subspace rgν(ιi)
in the Hilbert space ν(P ). Let pi denote the orthogonal projection onto the norm-closure rgν(ιi)
and put p :=

∨
i∈I pi. Note that all the pi’s, and hence p, are M -equivariant operators.

Consider the homomorphism ν−1(p) : P → P . We now prove that

rgν−1(p) = K
alg
.

This is sufficient since ν−1(p) : P → P is an idempotent morphism, so its range is a direct
summand in P .

”⊆” Let f : P → M be a homomorphism vanishing on K.
Since K

alg
(by definition) is the intersection of the kernels of all such homomorphisms, we need

to see that f vanishes on rgν−1(p).
Choose any i ∈ I. Since rg (ιi) ⊆ K we have f ◦ ιi = 0 and by functoriality ν(f) ◦ ν(ιi) = 0.
Therefore rgν(ιi) ⊆ ker ν(f) and hence also

rgp = spanC

( ⋃
i∈I

rg (pi)
)

= spanC

( ⋃
i∈I

rgν(ιi)
)
⊆ ker ν(f),

Thus we have ν(f) ◦ p = 0 and applying ν−1 yields f ◦ ν−1(p) = 0. Thus

rgν−1(p) ⊆ ker f.

”⊇” For any x ∈ K, the module Mx ⊆ K is a finitely generated submodule of P and therefore
an element in Ω by Corollary 1.3.21. Hence px = x, which shows that 1ν(P ) − p = 0 on K. Hence
1P − ν−1(p) = 0 on K and therefore K ⊆ ker(1P − ν−1(p)). Since P is assumed projective,
Proposition 1.1.9 implies that ker(1P − ν−1(p)) is closed in P and hence

K
alg ⊆ ker(1P − ν−1(p)) = rg(ν−1(p)).

Since P = rg(ν−1(p)) ⊕ rg (1 − ν−1(p)) is finitely generated and projective, it is clear that
K

alg
= rg(ν−1(p)) is finitely generated and projective.
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For the same reason, P/rg (ν−1(p)) = P/K
alg

is finitely generated and projective.
We now show the equality

dimM (K
alg

) = dim′
M (K),

which is well-defined, since we now know that K
alg

is finitely generated and projective.
Because ν(P ) ∈ FGHM(M ) it has the form πL2(M )n for an M -equivariant projection π : L2(M )n →
L2(M )n. Then the M -equivariant operator p̃ : L2(M )n → L2(M )n given by(

p 0
0 0

)
: πL2(M )n ⊕ (1− π)L2(M )n −→ πL2(M )n ⊕ (1− π)L2(M )n,

is a projection whose range is isomorphic to rg (p).
If we denote by σn the trace induced on B(L2(M )n)M by the standard trace on Mn(M ) (see e.g.
Lemma 1.4.1) we get

dimM (K
alg

) = dimM (rg (ν−1(p̃))) = σn(p̃).

Fix an arbitrary i ∈ I and extend pi : ν(P ) → ν(P ) to an M -equivariant projection
p̃i : L2(M )n → L2(M )n, in the same way as with p. We now want to prove that

dimM (Pi) = σn(p̃i).

Consider ν(ιi) : ν(Pi) → ν(P ) (which is one-to-one and maps ν(Pi) onto a dense subspace in
rg(pi)) and its polar decomposition V |ν(ιi)|. (see e.g. [MV] Prop. 18.18) Then V is an isometry
from rg(ν(ιi)∗) = rg |ν(ιi)| to rg(ν(ιi)) = rg(pi).
Since ν(ιi) is injective, ν(ιi)∗ : ν(P ) → ν(Pi) has dense image and hence V is an isometry from
ν(Pi) onto rg(pi). To see that ν(Pi) and rg(pi) are isomorphic as Hilbert M -modules, it is
therefore sufficient to prove that V is M -equivariant.
Since ν(ιi) and ν(ιi)∗ are M -equivariant, every polynomial in ν(ιi)∗ν(ιi) is M -equivariant and
hence the same is true for

√
ν(ιi)∗ν(ιi) = |ν(ιi)|. Given m ∈ M and x ∈ ν(Pi), we therefore have

(mV )(|ν(ιi)|x) = mν(ιi)(x) = ν(ιi)mx = V |ν(ιi)|mx = (V m)(|ν(ιi)|x),

so that mV and V m agrees on rg(|ν(ιi)|), which is dense in ν(Pi). This shows that V is M -
equivariant and we conclude that ν(Pi) and rg(pi) are isomorphic as Hilbert M -modules.
Thus

dimM (Pi) = σn(p̃i).

To finish the proof, we have to show that

σn(p̃) = sup
i∈I

σn(p̃i).

Since p̃i ≤ p̃ for every i ∈ I, the inequality ”≥” is evident.
Define, for each finite subset J in I, qJ := ∨j∈Jpi and extend qJ to a projection q̃J : L2(M )n →
L2(M )n in the same way as above. Then (q̃J)J∈Pe(I) is a monotone increasing net of projections
and since p := ∨i∈Ipi we get that (q̃J)J∈Pe(I) converges strongly to p̃.
Since σn is normal, this implies that σn(p̃) = supJ∈Pe(I) σn(q̃J). Because (Pi)i∈I is directed by
inclusion, every q̃J is dominated by an element in (p̃i)i∈I and the opposite inequality follows.

Corollary 1.4.4. [Lüc98] Let P be a finitely generated projective M -module and let Q be a finitely
generated projective M -submodule of P . Then dimM (Q) ≤ dimM (P ).
This implies that dim′

M (·) actually extends dimM (·).
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Proof. From Proposition 1.4.3, we know that Q is a direct summand in P and by Proposition
1.4.3 combined with additivity of dimM (·) we have

dimM (P ) ≥ dimM (Q) = dim′
M (Q) ≥ dimM (Q).

Hence

dim′
M (P ) = sup{dimM (Pi) | Pi ⊆ P ; Pi finitely generated and projective } = dimM (P ).

Before stating and proving the main theorem about the extended dimension function, we make a
small detour to prove some exactness-results for the functors ν and ν−1, which will become very
useful in the sequel. To this end, first some notation.

Definition 1.4.5. A sequence H1
F→ H2

G→ H3 of finitely generated Hilbert M -modules is said
to be weakly exact if rg (F ) is a dense subspace in ker(G).

Similarly, a sequence P1
f→ P2

g→ P3 of finitely generated projective M -modules is said to be
weakly exact if rg (f)

alg
= ker(g).

A morphism between two finitely generated Hilbert M -modules is called a weak isomorphism, if it
is injective and has dense image.
Similarly, a morphism f : P −→ Q of finitely generated projective M -modules, is called a weak
isomorphism if f is injective and rg (f)

alg
= Q.

Lemma 1.4.6. [Lüc97] Both ν and ν−1 preserves exactness and weak exactness.

Proof. Consider sequences

P1
f−→ P2

g−→ P3 in FGPIP(M ). (†)

H1
F−→ H2

G−→ H3 in FGHM(M ). (‡)

Claim 1: The sequence (‡) is weakly exact if, and only if, GF = 0 and for every K1,K2 ∈
FGHM(M ) and morphisms U : H2 → K2 and V : K1 → H2 we have

(UF = 0 and GV = 0) ⇒ UV = 0.

In the shape of a diagram, this looks like

K1

V

��

0

!!
H1

0 !!

F // H2
G //

U

��

H3

K2

Proof: Assume first that (‡) is weakly exact and let K1,K2, U and V be as in Claim 1, with
UF = 0 and GV = 0.
Then rg(V ) ⊆ ker(G) = rg(F ). From UF = 0 we get rg (F ) ⊆ ker(U) = ker(U) and thus

rg(V ) ⊆ rg (F ) ⊆ ker(U).

Conversely, assume that rg (F ) ⊆ ker(G) and rg(F ) $ ker(G) and fix a non-zero vector x in
ker(G) \ rg (F ). Put K1 := Mx and let V be the inclusion into H2. Note that K1 is a closed
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M -invariant subspace of the finitely generated Hilbert module H2 and hence a finitely generated
Hilbert M -module it self. Define K2 := H2/rg (F ) (which is again a finitely generated Hilbert
M -module) and let U : H2 → K2 be the quotient mapping.
Then UF = 0 and GV = 0 but UV (x) = U(x) 6= 0, since x /∈ rg (F ).
This proves Claim 1.

Claim 2: The sequence (†) is weakly exact if, and only if, gf = 0 and for every Q1, Q2 ∈
FGPIP(M ) and morphisms u : P2 → Q2 and v : Q1 → P2 we have

(uf = 0 and gv = 0) ⇒ uv = 0.

In the shape of a diagram, this looks like

Q1

v

��

0

  
P1

0   

f // P2
g //

u

��

P3

Q2

Proof: The proof of Claim 2 is basically a copy of the proof of Claim 1. The details are as
follows:
Assume first that (†) is weakly exact and let Q1, Q2, u, v be as in Claim 2. Since uf = 0, we
have rg(f) ⊆ ker(u) and since Q2 is projective, ker(u) is closed by Proposition 1.1.9. Thus
rg(f) ⊆ ker(u). Since gv = 0 by assumption, we get

rg (v) ⊆ ker(g) = rg(f) ⊆ ker(u).

Conversely, assume that g ◦ f = 0 and that rg(f) $ ker(g) and fix a non-zero element x ∈
ker(g) \ rg (f). Define Q1 := Mx and v to be the inclusion Mx ⊆ P2. Note, that Q1 is finitely
generated and hence projective by Corollary 1.3.21.
By Proposition 1.4.3, the module Q2 := P2/rg (f) is finitely generated and projective and we
define u to be the quotient mapping. Then uf = 0 and g ◦ v = 0, but uv(x) = u(x) 6= 0, since
x /∈ rg (f).

Since ν ◦ ν−1 ' idFGHM and ν−1 ◦ ν ' idFGPIP, it is not hard to check that both ν ◦ ν−1 and
ν−1 ◦ ν preserves weak exactness. Using this, and Claim 1 and Claim 2, it follows that both ν and
ν−1 preserves weak exactness.

Claim 3: The sequence (†) is exact if, and only if, gf = 0 and for every Q ∈ FGPIP(M ) and
morphism v : Q→ P2 with gv = 0, there exists a morphism u : Q→ P1 with fu = v

In the shape of a diagram, this looks like

Q

v

��

∃u

~~}
}

}
}

0

  
P1

f // P2
g // P3
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Proof: Assume first that (†) is exact and let Q, v be as in Claim 3. Then rg(v) ⊆ ker(g) = rg(f)
and by projectivity of Q, there exists u : Q→ P1 making the following diagram commutative

Q

v

��

u

||zz
zz

zz
zz

z

P1
f
// // rg (f)

Thus u fulfills the requirements.
Conversely, assume that gf = 0 and that the lifting-property from Claim 3 is fulfilled for every pair
(Q, v). Since g is map between finitely generated projective modules, Proposition 1.1.9 together
with Proposition 1.4.3, implies that ker(g) is finitely generated an projective. We may therefore
choose Q := ker(g) and v to be the inclusion. Then, by assumption, there exists u : ker(g) → P1

such that fu = v and therefore

ker(g) = rg(v) = rg(fu) ⊆ rg (f).

Since gf = 0 by assumption, this shows that (†) is exact.

Claim 4: The sequence (‡) is exact if, and only if, GF = 0 and for every K ∈ FGHM(M ) and
morphism V : K → H2 with GV = 0, there exists a morphism U : K → H2 with FU = V
In the shape of a diagram, this looks like:

K

V

��

∃U

}}z
z

z
z

0

!!
H1

F // H2
G // H3

Proof: Assume first that the GF = 0 and that the lifting-property from Claim 4 is fulfilled for
every pair (K , V ).
The kernel of G is a closed M -invariant subspace of H2 and therefore in FGHM(M ). We now
put K := ker(G) and let V denote the inclusion K ⊆ H2. Then, by assumption, there exists
U : K → H1 such that V = FU and hence

ker(G) = rg(V ) = rg(FU) ⊆ rg (F ).

Assume conversely, that the sequence (†) is exact. Then rg(F ) = ker(G) ∈ FGHM(M ).
The Hilbert M -module H1 splits as

H1 = ker(F )⊕ ker(F )⊥,

an the M -equivariant operator

F0 := F |ker(F )⊥ : ker(F )⊥ −→ rg (F )

is invertible. (with bounded M -equivariant inverse) By assumption, we have rg(V ) ⊆ rg (F ) and
we can therefore define U := F−1

0 V . Then U is bounded and M -equivariant and for every x ∈ K
we have

FU(x) = FF−1
0 V x = V x.

Since ν ◦ ν−1 ' idFGHM and ν−1 ◦ ν ' idFGPIP, it is not hard to check that both ν ◦ ν−1 and
ν−1 ◦ ν preserves exactness. Using this, and Claim 3 and Claim 4, it follows that both ν and ν−1

preserves exactness.
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We can now prove the main theorem of this section, which consist of a list of properties of the
extended dimension function.

Theorem 1.4.7 (Properties of the dimension function). [Lüc98] The extended dimension
function dim′

M (·) has the following properties.

1. Let M be an M -module and let (Mi)i∈I be a system of M -submodules of M . Assume
moreover, that (Mi)i∈I is directed by inclusion5 and that M = ∪i∈IMi. Then

dim′
M (M) = sup

i∈I
dim′

M (Mi). (∗)

Such a system (Mi)i∈I is called a cofinal system of submodules and the formula (∗) will
therefore be referred to as cofinality of the (extended) dimension function.

2. Let 0 →M ′ →M →M ′′ → 0 be a short-exact sequence of M -modules. Then

dim′
M (M) = dim′

M (M ′) + dim′
M (M ′′).

(With addition in [0,∞] being the obvious one)
We will be refer to this property as additivity of the (extended) dimension function.

3. Let M be a finitely generated M -module and let K be a submodule of M . Then K is a direct
summand in M , and the quotient M/K is finitely generated and projective.
Moreover

dim′
M (K) = dim′

M (K).

This formula will be referred to as continuity of the (extended) dimension function.

4. If M is a finitely generated M -module, then PM is finitely generated and projective,
M ' TM ⊕ PM and

dim′
M (M) = dim′

M (PM) = dimM (PM).

In particular dim′
M (M) is finite.

Proof .

Proof of 1. Consider any i ∈ I. Since every finitely generated projective submodule of Mi is
also a submodule of M , the inequality ”≥” is evident.
To prove the other inequality, it suffices to prove, that for any finitely generated projective sub-
module P of M , we can find a k ∈ I such that P ⊆Mk. To see this, we fix a finite set of generators
{ξ1, . . . , ξn} of P . Since M = ∪i∈IMi we can find i1, . . . , in ∈ I with ξij ∈Mij and since (Mi)i∈I
is directed by inclusion, there exists a k ∈ I with ∪nj=1Mij ⊆Mk. Hence P ⊆Mk.

Proof of 2. Consider a short-exact sequence 0 →M ′ ι→M
p→M ′′ → 0 and let P ⊆M ′′ be any

finitely generated projective M -module.
Since 0 ∈ P we have rg(ι) ⊆ p−1(P ) and by restriction we obtain a short-exact sequence

0 −→M ′ ι−→ p−1(P )
p−→ P −→ 0.

5I.e. ∀i, j ∈ I ∃k ∈ I s.t. Mi, Mj ⊆ Mk.
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Because P is projective this sequence splits, such that p−1(P ) ' P ⊕M ′.
We therefore have

dim′
M (M ′) + dimM (P ) = dim′

M (M ′) + dim′
M (P ) ≤ dim′

M (p−1(P )) ≤ dim′
M (M).

Since P was arbitrary, we conclude that

dim′
M (M ′) + dim′

M (M ′′) ≤ dim′
M (M).

To prove the opposite inequality, we consider an arbitrary finitely generated projective submodule
Q in M . We then get the following two short-exact sequences:

0 // ι(M ′) ∩Q // Q // p(Q) // 0 (∗)

0 // ι(M ′) ∩Q // Q // Q/ι(M ′) ∩Q // 0 (∗∗)

(All morphisms are the canonical ones and the closure is performed relative to Q)
Since Q is assumed to be finitely generated and projective, Proposition 1.4.3 implies that

Q = ι(M ′) ∩Q
⊕

Q/ι(M ′) ∩Q,

and that both summands are finitely generated and projective.
By additivity of dimM (·), we have

dimM (Q) = dimM (ι(M ′) ∩Q) + dimM (Q/ι(M ′) ∩Q).

Moreover, Proposition 1.4.3 implies that dimM (ι(M ′) ∩Q) = dim′
M (ι(M ′) ∩Q).

Because of the two short-exact sequences (∗) and (∗∗), we get an epimorphism
π : p(Q) → Q/ι(M ′) ∩Q by composing through the diagram

p(Q) ' Q/ι(M ′) ∩Q � Q/ι(M ′) ∩Q,

and hence another short-exact sequence

0 −→ kerπ −→ p(Q) −→ Q/ι(M ′) ∩Q −→ 0.

Because the right-most module in this sequence is projective, the sequence is split-exact and hence
Q/ι(M ′) ∩Q is isomorphic to a submodule in p(Q).
Since Q/ι(M ′) ∩Q is finitely generated and projective, we now get

dimM (Q/ι(M ′) ∩Q) ≤ dim′
M (p(Q)). (∗ ∗ ∗)

By combining these facts, we see that

dimM (Q) = dimM (ι(M ′) ∩Q) + dimM (Q/ι(M ′) ∩Q) (by (∗∗))
≤ dim′

M (ι(M ′) ∩Q) + dim′
M (p(Q)) (by (∗ ∗ ∗))

≤ dim′
M (M ′) + dim′

M (M ′′),

where the last inequality follows from the fact that p(Q) ⊆M ′′ and that ι(M ′) ∩Q is isomorphic
to a submodule in M ′.
Since this holds for any finitely generated projective Q ⊆M , we have

dim′
M (M) ≤ dim′

M (M ′) + dim′
M (M ′′),

and the claim follows.



38 CHAPTER 1. THE GENERALIZED MURRAY- VON NEUMANN DIMENSION

Proof of 3. We first notice, that in the case where M is also projective, the claim was already
proved in Proposition 1.4.3. Since M is finitely generated, we can choose an n ∈ N and a surjective
homomorphism p : M n →M . We now claim that

p−1(K) = p−1(K)
Mn

and M n/p−1(K) 'M/K.

Let x ∈ p−1(K) be given and consider an arbitrary homomorphism f : M n → M vanishing on
p−1(K). We need to show that f(x) = 0.
Since f vanishes on p−1(K) ⊇ ker p, we get an induced homomorphism f̃ : M n/ ker p→ M .
Letting ϕ denote the isomorphism M n/ ker p→M induced by p, we get a homomorphism
g := f̃ ◦ϕ−1 : M → M . One easily checks that g vanishes on K and, by construction of x, we get

0 = g(p(x)) = f̃(ϕ−1(px)) = f̃(x+ ker p) = f(x).

This shows that p−1(K) ⊆ p−1(K)
Mn

.
For the opposite inclusion it suffices to prove that p−1(K) is closed in M n.

So, choose any x ∈ p−1(K)
Mn

and any homomorphism f : M → M vanishing on K. We need to
prove that f(p(x)) = 0, and by definition of x, it suffices to show that f ◦ p : M n → M vanishes
on p−1(K). But this is true by construction of f .
To prove the isomorphism-statement in the claim, one easily checks that ψ : M n/p−1(K) →M/K
defined by

x+ p−1(K) 7−→ p(x) +K

is well-defined and indeed an isomorphism.
We now proceed with the proof of 3. By what was just proven, we get

M n/p−1(K)
Mn

= M n/p−1(K) 'M/K,

and by Proposition 1.4.3 the left-most module is finitely generated and projective. Hence the same
holds for M/K. Proposition 1.4.3 also gives

dim′
M (p−1(K)) = dimM (p−1(K)

Mn

) = dimM (p−1(K)) = dim′
M (p−1(K)).

Using the additivity of dim′
M (·) on the two short-exact sequences

0 −→ ker p ι−→ p−1(K)
p−→ K −→ 0 and 0 −→ ker p ι−→ p−1(K)

p−→ K −→ 0,

it follows that dim′
M (K) = dim′

M (K).
To see that K is a direct summand in M , we just note that the short-exact sequence

0 −→ K −→M −→M/K −→ 0,

is split-exact since M/K is projective.

Proof of 4 : This follows directly from 3. applied to K = {0}.

Corollary 1.4.8. If M is a finitely generated M -module, then

dim′
M (M) = dim′

M (M∗),

where M∗ is the dual module defined in Definition 1.1.7.
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Proof. By definition, M∗ = HomM (M,M ) with M -module structure given by

(mf)(x) := f(x)m∗,

for m ∈ M , f ∈ HomM (M,M ) and x ∈M .
Since M is finitely generated, PM is projective by Theorem 1.4.7 and by Corollary 1.3.16 the
module PM therefore possess an inner product 〈·|·〉, which is unique up to unitary isomorphism.
Note, that this implies that PM 3 x 7→ 〈·|x〉 ∈ (PM)∗ is an isomorphism.
By Theorem 1.4.7, we have dim′

M (M) = dim′
M (PM) and it is therefore sufficient to prove that

M∗ and (PM)∗ are isomorphic. Let κ denote the qoutient-map M →M/{0} =: PM . Then

ϕ : (PM)∗ −→M∗,

given by f 7→ f ◦ κ is M -linear and since κ is surjective ϕ is injective.
To see that ϕ is also surjective, we need to see that every morphism f : M → M factorizes (via κ)
through a morphism f̃ : PM → M . For this it is sufficient to see that f vanishes on {0}, which
follows directly from the definition of closure.

Corollary 1.4.9. [Lüc98] The extended dimension function dim′
M (·) is the only extension of

dimM (·) to arbitrary M -modules, satisfying continuity, additivity and cofinality.

Proof. Since the system of finitely generated submodules of any module M is cofinal, it suffices to
show that dimM (·) is the only extension to finitely generated modules, satisfying additivity and
continuity. By Theorem 1.4.7 part 4., we have dim′

M (M) = dim′
M (PM) = dimM (PM) for any

finitely generated module M and since part 4 (via part 3 ) is a consequence of only additivity and
continuity, the uniqueness follows.

Remark 1.4.10. In the light of Corollary 1.4.4 we will often omit the distinction between dimM (·)
and dim′

M (·) and just use the symbol dimM (·) to denote them both.

Corollary 1.4.11. [Lüc02] Let P and Q be finitely generated projective M -modules and let f :
P −→ Q be a homomorphism. Assume moreover, that dimM (P ) = dimM (Q). Then the following
statements are equivalent

(i) f is injective.

(ii) rg (f) = Q.

(iii) f is a weak isomorphism.

Proof .

”(i) ⇒ (ii)” Assume f is injective. Since Q is projective, rg (f) is a direct summand in Q by
Proposition 1.4.3 and hence Q/rg (f) is also finitely generated and projective.
Using Theorem 1.4.7 we get

dimM (Q/rg (f)) = dimM (Q)− dimM (rg (f))
= dimM (Q)− dimM (rg (f))
= dimM (Q)− dimM (P )
= 0.

Since dimM (·) is faithful on the class of finitely generated projective modules, we conclude that
Q = rg(f).
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”(ii)⇒ (iii)” Assume rg(f) = Q and note that

dimM (P ) = dimM (Q) = dimM (rg (f)) = dimM (rg (f)).

Using additivity of the dimension function on the short-exact sequence

0 −→ ker(f) ι−→ P
f−→ rg (f) −→ 0,

we conclude that dimM (ker(f)) = 0. Since f is a map between finitely generated projective
modules, its kernel is closed and hence by Proposition 1.4.3 finitely generated and projective.
Hence ker(f) = {0} and f is a weak isomorphism.
Since (iii) ⇒ (i) is trivial, the proof is complete.

We now proceed with an investigation of the behavior of the dimension function with respect
inductive limits. To this end, note that Theorem 1.4.7 part 1. is a special case of an inductive limit
process. We briefly recall the general notion of inductive limits. For this purpose, we consider a
directed set (I,≤) and a family of modules (Mi)i∈I over some unital ring R. Assume moreover
the following:
For each i, j ∈ I with i ≤ j there exists a homomorphism ϕji : Mi → Mj and if i, j, k ∈ I with
i ≤ j ≤ k then ϕkjϕji = ϕki. Then the following holds:

Proposition 1.4.12. There exists an R-module M , called the inductive limit of the system
(Mi)i∈I and a family of homomorphisms ϕi : Mi →M, such that

(i) M = ∪i∈Iϕi(Mi).

(ii) For each pair i, j ∈ I with i ≤ j we have ϕi = ϕjϕji.

(iii) The inductive limit is unique in the following sense: If (N, (ψi))i∈I fulfills (the analogue of)
(i) and (ii), then there exists a (unique) isomorphism α : M → N making the following
family of diagrams commutative:

Mi

ϕi

}}||
||

||
|| ψi

  B
BB

BB
BB

B

M α

∼ // N

(iv) For each i0 ∈ I we have kerϕi0 = ∪i≥i0 ker(ϕii0).

The inductive limit M is often denoted lim
→
Mi.

This is a standard algebraic construction and we omit the proof here. More details on inductive
limits can be found in [WO] and [RLL].

Assume, as before, that M is a finite von Neumann algebra endowed with a fixed normal,
faithful, tracial state τ . Then the following holds.

Theorem 1.4.13. [Lüc98] Consider a family (Mi)i∈I of M -modules with homomorphisms ϕji :
Mi →Mj whenever j ≥ i, satisfying the compatibility conditions ϕkjϕji = ϕki, when k ≥ j ≥ i.
Let ϕi : Mi → lim

→
Mi =: M be the morphisms from Proposition 1.4.12. Then the following holds.

(i) dimM (M) = supi∈I dimM (ϕi(Mi)).
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(ii) If moreover each i ∈ I is dominated by an i′ ∈ I (i.e. i ≤ i′) such that dimM (rg (ϕi′i)) is
finite, then

dimM (M) = sup
i∈I

inf
j≥i

(dimM (rg (ϕji))).

During the reading of the proof, it might be helpful to take a look at the diagram placed at
the end of the proof, which encodes the relative position (with respect to the directed set I), of
some of the modules appearing in the proof.

Proof. By Proposition 1.4.12, we have M = ∪i∈Irg (ϕi) and since ϕi = ϕj ◦ ϕji whenever j ≥ i,
the system (rg(ϕi))i∈I is directed by inclusion. Applying cofinality of the dimension function
(Theorem 1.4.7) to the system (rg(ϕi))i∈I yields the equality in (i).
To prove (ii) it suffices to prove the following identity

dimM (rg (ϕi)) = inf
j≥i

dimM (rg (ϕji)),

for each i ∈ I. Fix an i ∈ I and choose (according to assumptions) an i′ ∈ I such that i′ ≥ i and
dimM (rg (ϕi′i)) <∞. By Proposition 1.4.12 we have ker(ϕi′) = ∪j≥i′ ker(ϕji′) and hence

ker(ϕi′) ∩ rg (ϕi′i) = ∪j≥i′ ker(ϕji′) ∩ rg (ϕi′i).

Applying cofinality to the system (ker(ϕji′) ∩ rg (ϕi′i))j≥i′ we get

dimM (ker(ϕi′) ∩ rg (ϕi′i)) = sup
j≥i′

dimM (ker(ϕji′) ∩ rg (ϕi′i)). (†)

Since ϕi = ϕi′ϕi′i we get

dimM (rg (ϕi)) = dimM (rg (ϕi′ |rg (ϕi′i)
))

= dimM rg (ϕi′i)− dimM (kerϕi′ ∩ rg (ϕi′i)) (Additivity)
= dimM rg (ϕi′i)− sup

j≥i′
dimM (ker(ϕji′) ∩ rg (ϕi′i)) (by (†))

= inf
j≥i′

(dimM (rg (ϕi′i))− dimM (ker(ϕji′) ∩ rg (ϕi′i)))

= inf
j≥i′

dimM (rg (ϕji′ |rg (ϕi′i)
)) (Additivity)

= inf
j≥i′

dimM rg (ϕji) (since ϕji′ϕi′i = ϕji)

≥ inf
j≥i

dimM rg (ϕji). (since i′ ≥ i)

To see the opposite inequality, we note that for any j ≥ i there exists k ≥ j, i′ and we therefore
get

dimM (rg (ϕki)) = dimM (rg (ϕkjϕji)) = dimM (ϕkj(rg (ϕji))) ≤ dimM (rg (ϕji)).

This, combined with the two last lines in the above computation, gives

inf
j≥i′

dimM (rg (ϕji)) = inf
j≥i

dimM rg (ϕji).

We now have dimM (rg (ϕi)) = infj≥i dimM (rg (ϕji)) and (ii) follows.

• // • // • //
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33

33
33
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•Mj4 •Mj3
// · · ·
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Remark 1.4.14. The formula in Theorem 1.4.13 (ii) does not hold (in general) without the
assumption that each i ∈ I is dominated by an i′ with dimM (rg (ϕi′i)) <∞.
To see this, we consider the case I = N and define

Mi := M ({i,i+1,... }) = {x : {i, i+ 1, . . . } → M | supp(x) is finite },

and for j ≥ i we define
ϕji((xk)∞k=i) = (xk)∞k=j .

This turns (Mi)i∈N into an inductive system and we denote by M its inductive limit and by (ϕi)i∈N
the associated maps ϕi : Mi →M . We now claim that M = {0}.
To see this, consider any i ∈ N and an x = (xk)∞k=i ∈ Mi. Then, since x has finite support, we
can choose N ∈ N such that N > i and supp(x) ⊆ {i, . . . , N − 1}. We then get

ϕi(x) = ϕNϕNi(x) = ϕN (0) = 0,

and since M = ∪i∈Nrg (ϕi) we conclude that M = {0}.
On the other hand, for each i ∈ I we have dimM (Mi) = ∞, since for any given K ∈ N the
submodule

{x ∈Mi|supp(x) ⊆ {i, i+ 1, . . . , i+K − 1}} ⊆Mi,

is free on K generators and hence of dimension K.
Because each ϕji is surjective, we see from this that

sup
i∈N

inf
j>i

dimM (rg (ϕji)) = ∞.

We end this section, by introducing a special class of modules, which will be needed in the
investigation of the so-called induction-functor which we introduce in the following section.
As before, M denotes a finite von Neumann algebra, endowed with a fixed, faithful, tracial state
τ .

Definition 1.4.15. An M -module M is called finitely presented if there exists an exact sequence
of morphisms

M n f−→ Mm g−→M −→ 0, (∗)

and, in this case, the sequence (∗) is called a finite presentation of M .

The properties of finitely presented modules, which is of relevance to us, is collected in the
following lemma. For more results on finitely presented modules, we refer to [Lüc97].

Lemma 1.4.16. [Lüc02] Let M be an M -module. Then the following holds.

(i) M is finitely presented, if, and only if, there exists an exact sequence of the form

0 −→ P −→ Mm −→M −→ 0,

where P is finitely generated and projective.

(ii) If M and N are finitely presented M -modules and f : M → N is a homomorphism, then
rg (f) is finitely presented.

(iii) If M is finitely presented and dimM (M) = 0, then there exists an exact sequence of the form

0 −→ M n f−→ M n −→M −→ 0,

where f is self-adjoint, with respect to the standard inner product 〈·|·〉st on M n.

Proof .
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Proof of (i): Assume that 0 −→ P
f−→ Mm q−→ M −→ 0 is exact and that P is finitely

generated and projective. Then P is (isomorphic to) a direct summand in M n for suitable n ∈ N.
That is, M n = P ⊕Q for some module Q. Define F : M n → Mm by F (x, y) = f(x). Then

M n F−→ Mm q−→M −→ 0,

is a finite presentation of M .
Conversely, if M n f−→ Mm g−→ M −→ 0 is a finite presentation of M , then ker(g) is finitely
generated and hence projective by Corollary 1.3.21. Then

0 −→ ker(g) ι−→ Mm q−→M −→ 0,

has the required properties.

Proof of (ii): Choose a finite presentation M n h−→ Mm g−→ N −→ 0 of N . We then have an
exact sequence

M n h−→ g−1(rg (f))
g−→ rg (f) −→ 0.

Since both rg(f) and ker(g) are finitely generated, one easily checks that P := g−1(rg (f)) is
finitely generated and, by Corollary 1.3.21, therefore projective. Thus, up to isomorphism, we
have M l = P ⊕Q for some module Q and some l ∈ N.
Define α : M n ⊕M l −→ M l by

M n ⊕ P ⊕Q 3 (x, y, z) 7−→ (h(x), z) ∈ P ⊕Q,

and β : M l → rg (f) by
P ⊕Q 3 (x, y) 7−→ gx ∈ rg (f).

Then M n ⊕M l α−→ M l β−→ rg (f) −→ 0 is a finite presentation of rg (f).

Proof of (iii:) Assume that M is finitely presented with dimM (M) = 0 and choose (according
to (i)) an exact sequence

0 −→ P
g−→ M n p−→M −→ 0,

with P finitely generated and projective. Since dimM (M) = 0 and g is injective, additivity of the
dimension function and Corollary 1.4.11 implies that g is a weak isomorphism.
Choose an inner product on P and consider the induced map

ν(g) : ν(P ) −→ L2(M )n.

Then, since ν preserves weak exactness, ν(g) is also a weak isomorphism; i.e. injective with dense
range. If we do the polar decomposition ν(g) = |ν(g)∗|v, then v is an isomorphism from ν(P ) to
L2(M )n and |ν(g)∗| : L2(M )n −→ L2(M )n is an injection. (see e.g. the proof of Proposition
1.4.3) Therefore u := ν−1(v) is an isomorphism from P to M n and f := ν−1(|ν(g)∗|) : M n → M n

is a self-adjoint injection. The sequence

0 −→ M n f−→ M n p−→M −→ 0,

is exact, since rg(f) = rg(gu−1) = rg(g) = ker(p).
This completes the proof.



44 CHAPTER 1. THE GENERALIZED MURRAY- VON NEUMANN DIMENSION

1.5 The induction functor

Let M and N be finite von Neumann algebras with faithful, normal, tracial states τ and σ
respectively. Let ϕ : N → M be a unital, trace-preserving, ∗-algebra-homomorphism, where
trace-preserving means that σ = τ ◦ ϕ. Via the homomorphism ϕ, M can be considered a right
N -module6 and the functor M ⊗N − from Mod(N ) to Mod(M ) is called induction with ϕ and
we denote it by ϕ∗.
Note, that since ϕ is assumed to be trace-preserving, we have

‖ητ (ϕ(x))‖2 = τ(ϕ(x)∗ϕ(x)) = τ(ϕ(x∗x)) = σ(x∗x) = ‖ησ(x)‖2,

for any x ∈ N .
In the following, ϕn will denote (ϕ,ϕ, . . . , ϕ) : N n → M n and ητ and ησ will (also) denote the
inclusions of M n and N n respectively into L2(M , τ)n and L2(N , σ)n.
Moreover, e1, . . . , en denotes the canonical basis of N n, where

ei = (0, . . . , 0, 1, 0 . . . , 0),

with the 1 in the i’th position. To avoid confusingly many appearances of the letter ”M”; through-
out this section, we choose the last letters in the alphabet (X,Y, Z, · · · ) to denote modules. The
following theorem is a slight generalization of [Lüc98] Theorem 3.3.

Theorem 1.5.1. Induction with ϕ is a has the following properties.

(i) It preserves direct sums and projectivity and if X is a finitely generated N -module, then
ϕ∗(X) is a finitely generated M -module.

(ii) It preserves exactness.

(iii) For any X ∈ Mod(N ) we have

dimN (X) = dimM ϕ∗(X)

Proof .

Proof of (i): Since the tensor product distributes over direct sums (up to canonical isomor-
phism), we get that ϕ∗ preserves direct sums.
If X ∈ Mod(N ) is finitely generated, say by ξ1, . . . , ξn, then ϕ∗(X) := M ⊗N X is generated as
an M -module by 1⊗ ξ1, . . . , 1⊗ ξn and is therefore especially finitely generated.
An N -module X is projective if, and only if, it is isomorphic to a direct summand in a free
N -module. One easily checks that ϕ∗ preserves free-ness and since it also preserves direct sums,
it preserves projectivity.

Proof of (ii): This is the most technical part of the proof. It is divided into four parts, in
which we gradually obtain the desired result for an increasing class of modules. The details are as
follows.

Part 1: If X is a finitely generated and projective N -module, then dimN (X) = dimM (ϕ∗(X))

Since X is finitely generated and projective, we may assume that X = N np for some n ∈ N
and some self-adjoint idempotent p ∈ Mn(N ). Let ι denote the inclusion N np ⊆ N n and let α
denote the canonical isomorphism M ⊗N N n → M n given by

T ⊗ (x1, . . . , xn) 7−→ (Tϕ(x1), . . . , Tϕ(xn)).
6The action being x · n := xϕ(n) for x ∈ M and n ∈ N
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Since p is idempotent, α ◦ (1⊗ ι) is an injective M -linear map from M ⊗N N np into N n.
Let pij denote the (i, j)’th entrance in p and denote by ϕ(p) the matrix {ϕ(pij)}ni,j=1 ∈Mn(M ).
Then, for (x1, . . . , xn) ∈ N n and T ∈ M , we get

α ◦ (1⊗ ι)(T ⊗ (x1, . . . , xn)p) = α(T ⊗ (
n∑
i=1

xipi1, . . . ,
n∑
i=1

xipin))

= (T
n∑
i=1

ϕ(xi)ϕ(pi1), . . . , T
n∑
i=1

ϕ(xi)ϕ(pin))

= T (ϕ(x1), . . . , ϕ(xn))ϕ(p).

This shows, that α ◦ (1⊗ ι) maps M ⊗N N np injectively into M nϕ(p) and since

α ◦ (1⊗ ι)(T ⊗ ei) = (Tϕn(ei))ϕ(p),

it follows that α ◦ (1⊗ ι) is surjective. Note, that since ϕ is a ∗-algebra-homomorphism, ϕ(p) is a
self-adjoint idempotent in Mn(M ) and since ϕ is assumed trace-preserving we get

dimM (ϕ∗(X)) = dimM (M⊗N N np) = dimM (M nϕ(p)) =
n∑
i=1

τ(ϕ(pii)) =
n∑
i=1

σ(pii) = dimN (X).

Part 2: If X is a finitely presented N -module, then TorN
1 (M , X) = 0 and

dimN (X) = dimM (ϕ∗(X)).

Since X is finitely presented, it is in particular finitely generated and hence it splits as
X ' TX ⊕ PX by Theorem 1.4.7.
By Lemma 1.4.16 (ii), also TX is finitely presented and since dimN (TX) = 0, there exists (Lemma
1.4.16 (iii)) an exact sequence

0 −→ N n f−→ N n q−→ TX −→ 0, (†)

where f is represented by a self-adjoint matrix A ∈Mn(N ). (I.e. f = RA.)
Since f is injective and dimN (TX) = 0, f is a weak isomorphism (Corollary 1.4.11) and since ν
preserves weak exactness, we see that rg(ν(f)) is dense in L2(N )n.

By general homological algebra, the tensor-product is right-exact (see e.g. [Fox] 19.19), and
by applying the induction-functor ϕ∗ to (†), we therefore get the following exact sequence:

M ⊗N N n 1⊗RA−→ M ⊗N N n 1⊗q−→ M ⊗N TM −→ 0.

We now aim to show that 1⊗RA is injective.
A direct computation reveals that α ◦ (1 ⊗ RA) = Rϕ(A) ◦ α and hence we get the following
commutative diagram

M ⊗N N n

1⊗RA

��

α
∼

//M n

Rϕ(A)

��

ητ // L2(M )n

ν(Rϕ(A))

��
M ⊗N N n

α

∼ //M n
ητ

// L2(M )n

(♦)
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We now claim that ν(Rϕ(A)) has dense range.
To see this, let ξ ∈ L2(M )n and ε > 0 be given and choose x ∈ M n such that ‖ητ (x)− ξ‖2 <

ε
2 .

Then x has the form α(
∑l
i=1 si⊗zi), for si ∈ M and zi ∈ N n. Assume, without loss of generality,

that x 6= 0. By what was proven above, ν(RA) has dense range and since ν(RA) is the extension

of RA by continuity, we have that rg (ν(RA)) ⊆ ησ(rg (RA))
L2

and hence that ησ(rg (RA) is dense
in L2(N )n. So we may choose y1, . . . , yl ∈ N n such that

‖ησ(RA(yi))− ησ(zi)‖2 <
ε

2l supli=1(‖si‖∞)
,

where ‖si‖∞ denotes the operator-norm of si.
We now have

‖ητ ◦ α ◦ (1⊗RA)(
l∑
i=1

si ⊗ yi)− ξ‖2 = ‖ητ ◦ α ◦ (1⊗RA)(
l∑
i=1

si ⊗ yi)− ητ (x) + ητ (x)− ξ‖2

≤ ‖ητ ◦ α(
l∑
i=1

si ⊗ (RA(yi)− zi))‖2 +
ε

2

= ‖ητ (
l∑
i=1

siϕn(RA(yi)− zi))‖2 +
ε

2

≤
l∑
i=1

‖ητ (siϕn(RA(yi)− zi))‖2 +
ε

2

≤
l∑
i=1

‖si‖∞‖ητ (ϕn(RA(yi)− zi))‖2 +
ε

2

≤ sup
i

(‖si‖∞)
l∑
i=1

‖ησ((RA(yi)− zi))‖2 +
ε

2

<
ε

2
+
ε

2
.

By commutativity of the diagram (♦), this implies that

‖ν(RA) ◦ ητ ◦ α(
l∑
i=1

si ⊗ yi)− ξ‖2 < ε,

and hence rg(ν(Rϕ(A))) is dense in L2(M )n.
Since f = RA is self-adjoint, A ∈Mn(N ) is self-adjoint and since ϕ is a ∗-algebra-homomorphism,
ϕ(A) ∈ Mn(M ) is also self-adjoint. Therefore Rϕ(A) : M n → M n is self-adjoint and hence
ν(Rϕ(A)) : L2(M )n → L2(M )n is self-adjoint. From this it follows that

ker(ν(Rϕ(A))) = rg(ν(Rϕ(A))∗)⊥ = rg(ν(Rϕ(A)))⊥ = {0}.

Since ν−1 preserves exactness, also Rϕ(A) is injective and since

ϕ∗(RA) = 1⊗RA = α−1 ◦Rϕ(A) ◦ α,

we see that ϕ∗(f) = ϕ∗(RA) = 1⊗RA is injective.
We therefore have an exact sequence

0 −→ ϕ∗(N n)
ϕ∗(f)−→ ϕ∗(N n)

ϕ∗(q)−→ ϕ∗(TX) −→ 0, (‡)

and with this exact sequence at our disposal, we are now able to prove the rest of Claim 2.
By additivity of the dimension function, applied to (‡), we get

dimM (ϕ∗(TX)) = n− n = 0,
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and hence

dimN (X) = dimN (PX) + dimN (TX) (Additivity)
= dimN (PX) + 0
= dimM ϕ∗(PX) + 0 (by Part 1)
= dimM ϕ∗(PX) + dimM ϕ∗(TX)
= dimM (ϕ∗(X)). (Additivity)

We now prove that TorN
1 (M , X) = 0.

Since TorN
∗ (M ,−) respects direct sums (see e.g. [CE], Chp.VI, Proposition 1.3 ) we get

TorN
1 (M , X) = TorN

1 (M , PX ⊕ TX)

' TorN
1 (M , PX)⊕ TorN

1 (M , TX)

' TorN
1 (M , TX). (since PX is N -projective)

It is therefore sufficient to prove that TorN
1 (M , TX) = 0.

To see this, we note that (†) is a free N -resolution of TX and hence TorN
1 (M , TX) can be

computed as the homology in degree one, of the complex

0 −→ ϕ∗(N n)︸ ︷︷ ︸
degree 1

ϕ∗(f)−→ ϕ∗(N n)︸ ︷︷ ︸
degree 0

−→ 0,

which vanishes by injectivity of ϕ∗(f) = 1⊗RA.
This completes the proof of Part 2.

Part 3: If X is a finitely generated N -module, then TorN
1 (M , X) = 0.

Since X is finitely generated, we may choose a finitely generated free module F and an epi-
morphism p : F → X. Denote by K the kernel of p and consider the associated short-exact
sequence

0 −→ K
j−→ F

p−→ X −→ 0,

(here j denotes the inclusion) and the induced long-exact sequence of Tor-groups:

� � // TorN
1 (M ,K) // TorN

1 (M , F ) // TorN
1 (M , X)

ssgggggggggggggggggggggggg

TorN
0 (M ,K) // TorN

0 (M , F ) // TorN
0 (M , X) // 0

Since F is free (and hence projective) TorN
1 (M , F ) = 0 and it therefore suffices to show that the

induced map

TorN
0 (M ,K) = M ⊗N K

ϕ∗(j) //M ⊗N F = TorN
0 (M , F ),

is injective. So, assume that ϕ∗(j)(x) = (1⊗ j)x = 0 for some x =
∑n
i=1 Ti ⊗ ki ∈ M ⊗N K and

let K ′ be the submodule of F generated by k1, . . . , kn. As above, we have a long-exact sequence
of Tor-groups

� � // TorN
1 (M ,K ′) // TorN

1 (M , F ) // TorN
1 (M , F/K ′)

ssffffffffffffffffffffffff

TorN
0 (M ,K ′) // TorN

0 (M , F ) // TorN
0 (M , F/K ′) // 0,
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and since F/K ′ is finitely presented (Lemma 1.4.16 (ii)), Part 2 implies that TorN
1 (M , F/K ′) = 0.

This means that 1⊗ j = ϕ∗(j) : M ⊗ N K ′ → M ⊗ N F is injective and hence that x is zero in
M ⊗N K ′. Then, in particular, x is zero in M ⊗N K and thus ϕ∗(j) : M ⊗N K → M ⊗N F is
injective.

Part 4: Induction with ϕ preserves exactness

Since ϕ∗ := M ⊗N − is right-exact by construction, it suffices to show that TorN
1 (M , X) = 0

for all N -modules X. (see e.g. [Wei] Ex. 3.2.1)
Let (Xi)i∈I denote the cofinal system of finitely generated submodules ofX. (ordered by inclusion)
Since TorN

∗ (M ,−) commutes with inductive limits (see e.g. [CE], Chp. VI, Prop. 1.3), it suffices
to show that

TorN
1 (M , Xi) = 0, for every i ∈ I.

But this follows from Part 3; and the proof of (ii) is complete.

Proof of (iii): Assume X to be any N -module and let (Xi)i∈I denote the system of finitely
generated submodules of X, ordered by inclusion. This is a cofinal system of submodules and by
Theorem 1.4.7 we have

dimN (X) = sup
i∈I

dimN (Xi).

Since ϕ∗ preserves exactness, each ϕ∗(Xi) is (isomorphic to) a submodule in ϕ∗(X) and since each
Xi is finitely generated over N , each ϕ∗(Xi) is finitely generated over M . The system (ϕ∗(Xi))i∈I
is therefore a cofinal system (of finitely generated submodules) in ϕ∗(X) and hence

dimM ϕ∗(X) = sup
i∈I

dimM (ϕ∗(Xi)).

Because of this, it suffices to consider the case where X is finitely generated.
Choose a finitely generated free module F , a surjective homomorphism f : F → X and denote by
K the kernel of f . By exactness of ϕ∗, the short exact sequence

0 −→ K −→ F −→ X −→ 0,

induces a short-exact sequence

0 −→ ϕ∗(K) → ϕ∗(F ) −→ ϕ∗(X) −→ 0.

Applying additivity of the dimension function to the two short-exact sequences, gives the following
equations

dimN (X) = dimN (F )− dimN (K)
dimM (ϕ∗(X)) = dimM (ϕ∗(F ))− dimM (ϕ∗(K)).

Since free modules are projective, Part 1 implies that it suffices to prove

dimN (K) = dimM (ϕ∗(K)).

By repeating the above cofinality-argument (with X replaced by K), we may assume that K is
finitely generated. But then K is a finitely generated submodule of the projective N -module F
and therefore projective since N is semi-hereditary. (Corollary 1.3.21) Thus Part 1 applies and
we conclude that

dimN (X) = dimM (ϕ∗(X)) = dimM (M ⊗N X),

as desired.
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Remark 1.5.2. We place ourselves under the hypotheses of Theorem 1.5.1 and assume for sim-
plicity that N is a subalgebra of M and that ϕ is the inclusion.
Consider a right N -module Y . Then Y may be considered a left N op-module via the action
nop · y := yn and we can therefore form the induced module M op ⊗N opY .
By construction, this is a left M op-module and may therefore be considered as a right M -module
via the action

(aop ⊗ y) ·m := mop(aop ⊗ y) = (mopaop)⊗ y.

The map
M op ⊗N opY 3 mop ⊗ y 7−→ y⊗m ∈ Y ⊗N M ,

is an isomorphism of right M -modules and using this (and Theorem 1.5.1) one easily checks that
the functor Y 7→ Y ⊗N M is exact; from the category of right N -modules to the the category of
right M -modules.

Consider now a left N ⊗N op-module Z. Then Z can be considered as an N -bimodule, (see
e.g. section 2.1) with respect to the action

a · z := (a⊗ 1)z and z · b := (1⊗ bop)z.

We may therefore form the M -bimodule M ⊗N Z ⊗N M and we note that the functor
Z 7→ M ⊗N Z ⊗N M is exact, as the composition of two exact functors.
When M ⊗N Z ⊗N M is considered as a left M ⊗M op-module, with respect to the action

(a⊗ bop) · (m⊗ z ⊗ n) := (am)⊗ z ⊗ (nb),

M ⊗N Z ⊗N M is isomorphic to

(M ⊗M op)⊗N ⊗N opZ,

with the standard action of multiplication on the first factor.
From this it follows, that also (M ⊗M op)⊗ N ⊗N op− is exact; as functor from the category of
left N ⊗N op-modules, to the category of left M ⊗M op-modules.
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Chapter 2

Some Homology Theory

In this chapter, we recapitulate some basic facts on Hochschild homology and the bar-resolution.
These subjects are central in the definition of L2-homology for von Neumann algebras and to set
up notation we give a short introduction here. The last half of the chapter consists of a short
introduction to group homology and we explain a link between the homology of a group and the
Hochschild homology of its associated group algebra.
This is not, in any way, a comprehensive treatment, but to avoid to many unnecessary digressions
we just introduce what is needed for the sequel. For more details we refer to [Lod].

2.1 Hochschild homology

Consider a unital (associative) C-algebra A. A bimodule over A (or an A-bimodule) is a (complex)
vector space M , with structure as both a left- and a right A-module, such that

(am)b = a(mb) and (λ1)m = m(λ1) = λm,

for all a, b ∈ A, m ∈M and λ ∈ C.
Note, that A itself is an A-bimodule, with respect to multiplication from left and right.
An A-bimodule M may also be considered a left module over A⊗Aop, with respect to the action

(a⊗ bop)m := amb,

and, similarly, as a right A⊗Aop-module with respect to the action m(a⊗ bop) := bma.
Conversely, given a left A⊗Aop-module M , we can turn M into an A-bimodule by setting

am := (a⊗ 1)m and mb := (1⊗ bop)m.

Similarly, if M is a right A⊗Aop-module, we can turn M into an A-bimodule, be setting

am := m(1⊗ aop) and mb := m(b⊗ 1)

We will switch hence and forth between these different module-structures and unless otherwise
mentioned, an A-bimodule M is always considered a left (resp. right) A⊗Aop-module with respect
to the actions introduced above.
The algebraic tensor product A⊗Aop is called the enveloping algebra and to simplify notation we
will some times denote it by Ae. We now give the definition of Hochschild homology.

Definition 2.1.1. Let A be a unital C-algebra and let M be a bimodule over A. We then define
C0(A,M) := M and

Cn(A,M) := M ⊗A⊗n for n ∈ N.

51
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Here A⊗n := A⊗A⊗ · · · ⊗A. (n copies.) We define the n’th Hochschild boundary map
bn : Cn(A,M) → Cn−1(A,M) as

bn(m,a1, . . . , an) := (ma1, a2, . . . , an)

+
n−1∑
i=1

(−1)i(m,a1, . . . , ai−1, aiai+1, ai+2, . . . , an)

+ (−1)n(anm,a1, . . . , an−1),

where we for notational convenience write (m,a1, . . . , an) in stead of m⊗ a1 ⊗ a2 ⊗ . . .⊗ an.

A straight forward computation shows, that bn as defined above is indeed a boundary map,
in the sense that bnbn+1 = 0. In stead of doing the calculation on bn directly, we will prove the
following slightly more general lemma, which has bnbn+1 = 0 as an easy consequence.

Lemma 2.1.2. [Lod] Let (Kn)∞n=0 be a sequence of modules over a unital ring R, such that, for
each n ≥ 1, we have a family of maps

dni : Kn → Kn−1 for i ∈ {0, . . . , n}.

Assume moreover, that dni d
n+1
j = dnj−1d

n+1
i for 0 ≤ i < j ≤ n.

Setting ∂n :=
∑n
i=0(−1)idi we have ∂n∂n+1 = 0 and hence that (K∗, ∂∗) is a (differential) complex.

Proof. We have

∂n∂n+1 = (
n∑
i=0

(−1)idni )(
n+1∑
j=0

(−1)jdn+1
j )

=
n∑
i=0

n+1∑
j=0

(−1)i+jdni d
n+1
j

=
n;n+1∑
i;j=0
i<j

(−1)i+jdni d
n+1
j +

n;n+1∑
i;j=0
i≥j

(−1)i+jdni d
n+1
j

=
n;n+1∑
i;j=0
i<j

(−1)i+jdnj−1d
n+1
i +

n;n+1∑
i;j=0
i≥j

(−1)i+jdni d
n+1
j (by assumption)

For each term (−1)i+jdnj−1d
n+1
i in the left-most sum, the pair (i′, j′) := (j − 1, i) satisfies i′ ≥ j′

and we see that

(−1)i+jdnj−1d
n+1
i + (−1)i

′+j′dni′d
n+1
j′ = (−1)i+jdnj−1d

n+1
i + (−1)j−1+idnj−1d

n+1
i = 0.

Hence every term in the first sum cancels with one in the second and we just need to check that
the number of terms in to sums are equal.
This can, for instance, be seen geometrically by considering a lattice of the following form:

i

•
OO

• • • • •
i=j

• i=j+1

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • • // j
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Example 2.1.3. Consider again the Hochschild complex Cn(A,M) := M ⊗A⊗n and define
dni : Cn(A,M) → Cn−1(A,M) as

dn0 (m,a1, . . . , an) := (ma1, a2, . . . , an)
dni (m,a1, . . . , an) := (m,a1, . . . , aiai+1, . . . , an) for i ∈ {1, . . . , n− 1}
dnn(m,a1, . . . , an) := (anm,a1, . . . , an−1).

A direct computation shows that dni d
n+1
j = dnj−1d

n+1
i when 0 ≤ i < j ≤ n and since

bn =
∑n
i=0(−1)idni by definition, we have bnbn+1 = 0 by Lemma 2.1.2.

Definition 2.1.4. The homology of the complex (C∗(A,M), b∗) is called the Hochschild homology
of the algebra A with coefficients in M and is denoted H∗(A,M).

2.1.1 The Bar-resolution

In this section we give an equivalent description of the Hochschild homology of a unital algebra,
in the language of homological algebra.
Assume, as before, that A is a unital C-algebra and consider A as a left-module over A ⊗ Aop

under the action (a⊗ bop)x := axb. We set

Cbar
n (A) := A⊗n+2 for n ∈ N0,

and define (for n ≥ 1) b′n : Cbar
n (A) → Cbar

n−1(A) by

b′n(a0, . . . , an+1) =
n∑
i=0

(−1)i(a0, . . . , ai−1, aiai+1, ai+2, . . . , an+1).

Notice, that by putting M = A in the definition of the Hochschild complex, we have
Cbar
n (A) = Cn+1(A,A) and b′n =

∑n
i=0(−1)idn+1

i , where the facemaps dni are the ones from
Example 2.1.3. Hence b′nb

′
n+1 = 0 by Lemma 2.1.2.

The complex (Cbar
∗ (A), b′∗) is called the bar-complex of A.

Remark 2.1.5. Each Cbar
n (A) is also an A⊗Aop-module under the action

(α⊗ βop)(a0, . . . , an+1) = (αa0, a1, . . . , an, an+1β).

Since A is a vector space over C it has a basis (ei)i∈I . Then one easily verifies, that elements of
the form 1⊗ ei1 ⊗ . . .⊗ ein ⊗ 1 forms a basis of Cbar

n (A), when considered as an A⊗Aop-module.
Hence each Cbar

n (A) is a free A⊗Aop-module.
Note also, that the boundary-maps b′n commutes with the action of A⊗Aop.

Proposition 2.1.6. [Lod] The bar-complex (Cbar
∗ (A), b′∗) is acyclic and the multiplication map

µ : A ⊗ A → A given by µ(a′ ⊗ a′′) = a′a′′ is an augmentation of this complex. In this way,
(Cbar

∗ , b′∗) becomes a free resolution of the A⊗Aop-module A.

Proof. Since b′1 is defined by : a0 ⊗ a1 ⊗ a2 7→ (a0a1)⊗ a2 − a0 ⊗ (a1a2), the associativity of A
implies that µb′1 = 0.
Conversely, if

∑
i ai ⊗ bi ∈ A⊗A with

∑
i aibi = 0, then∑

i

ai ⊗ bi =
∑
i

ai ⊗ (bi1)− (
∑
i

aibi)⊗ 1

=
∑
i

ai ⊗ (bi1)− (aibi)⊗ 1

=
∑
i

−b′1(ai ⊗ bi ⊗ 1) ∈ rg (b′1).
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This shows, that the zero’th homology of the augmented complex vanishes and we now have to
prove that this is also the case for the higher homology-groups.
Consider the map sn : A⊗n+2 → A⊗n+3 given by

a0 ⊗ · · · ⊗ an+1 7−→ 1⊗ a0 ⊗ · · · ⊗ an+1.

We want to show that (sn)∞n=0 is a contracting homotopy; i.e. that

b′n+1sn + sn−1b
′
n = idCbar

n (A).

For i ∈ {1, . . . , n} we have

sn−1d
n+1
i (a0, . . . , an+1) = (1, a0, . . . , aiai+1, . . . , an+1) = dn+2

i+1 (1, a0, . . . , an+2) = dn+1
i+1 sn(a0, . . . , an+1),

and a similar computation shows that dn+2
0 sn = idCbar

n (A). From this it follows1 that

b′n+1sn + sn−1b
′
n =

n+1∑
i=0

(−1)idn+2
i sn +

n∑
i=0

(−1)isn−1d
n+1
i

= dn+2
0 sn +

n+1∑
i=1

(−1)isn−1d
n+1
i−1 +

n∑
i=0

(−1)isn−1d
n+1
i

= idCbar
n (A).

Consider the enveloping algebra A⊗Aop. As explained in the beginning of this section, A⊗Aop

can be considered as an A-bimodule with respect to the action

a(x⊗ yop) := x⊗ (yopaop) and (x⊗ yop)b := (xb)⊗ yop.

We can therefore form the Hochschild complex (C∗(A,A⊗Aop), b∗). Note, that each of the vector
spaces Cn(A,A⊗Aop) = (A⊗Aop)⊗A⊗n is a left A⊗Aop-module, with respect to the action of
multiplication on the first factor. By construction of the bimodule-structure on A⊗Aop, it follows
that the Hochschild boundary maps commutes with the left action of A⊗Aop.
The following holds.

Proposition 2.1.7. The family of maps ϕn : Cbar
n (A) → Cn(A,A⊗Aop) given by

(a0, a1, . . . , an, an+1) 7−→ ((a0 ⊗ aop
n+1), a1, . . . , an),

is an isomorphism of complexes of left A⊗Aop-modules. Here Cbar
n (A) is considered a left A⊗Aop-

module with respect to the action from Remark 2.1.5.

Proof. It is clear that ϕn is an isomorphism of left A⊗Aop-modules in each degree and a direct
computation shows that ϕn commutes with the differentials.

Corollary 2.1.8. The complex (C∗(A,A⊗Aop), b∗) is a free resolution of A as an A⊗Aop-module.

Proof. This follows from Proposition 2.1.1 and Proposition 2.1.6 in conjunction.

Corollary 2.1.9. [Lod] For any A-bimodule M , the n’th Hochschild homology Hn(A,M) is iso-
morphic to the n’th Tor-group TorA⊗A

op

n (M,A), where M is considered a right A ⊗ Aop-module
with respect to the action m(a⊗ bop) := bma.

1Recall that b′n =
∑n

i=1(−1)idn+1
i
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Proof. By Remark 2.1.5 and Corollary 2.1.8 the complex (C∗(A,Ae), b∗) is a free resolution of A
as a left module over Ae := A⊗Aop.
The n’th homology of the induced complex (M ⊗ AeC∗(A,Ae), 1⊗ b∗) is therefore TorA

e

n (M,A).
Consider the natural isomorphism

M ⊗ AeCn(A,Ae) = M ⊗ Ae(Ae)⊗A⊗n ϕn−→M ⊗A⊗n = Cn(A,M),

given by
ϕn : x⊗ (a⊗ bop)⊗ (a1 ⊗ · · · ⊗ an) 7−→ (bxa)⊗ (a1 ⊗ · · · ⊗ an).

A direct computation shows that bMn ◦ ϕn = ϕn−1 ◦ (1⊗ bAe

n ) (the superscript denotes the ring of
coefficients) and hence (ϕn)n∈N is an isomorphism of complexes. Since the n’th homology of the
target-complex is exactly Hn(A,M), the claim follows.

2.2 Group homology

In this section we briefly recall the notion of group von Neumann algebras and that of homology
of a discrete group. Using this, we define the L2-homology and the L2-Betti numbers of a discrete
group. Finally, we discuss a special case of the induction functor from Theorem 1.5.1 in this
context.

Let G be is a countable discrete group with neutral element e. For each g ∈ G we define a
unitary operator λg ∈ B(l2(G)) by

λg(x)(γ) := x(g−1γ) for x ∈ l2(G) and γ ∈ G.

Then the map λ : g 7→ λg is a unitary representation of G, called the left-regular representation.
Similarly we define a unitary ρg ∈ B(l2(G)) by setting

ρg(x)(γ) := x(γg),

and the map ρ : g 7→ ρg is also a unitary representation, called the right-regular representation of
G. Associated with these two representation are two von Neumann algebras, namely

{λg|g ∈ G}′′ and {ρg|g ∈ G}′′.

The von Neumann algebra {λg|g ∈ G}′′ is called the group von Neumann algebra of G and will be
denoted N (G). In the following, we will denote by δg ∈ l2(G) the characteristic function of the
singleton-set {g} and we notice that {δg|g ∈ G} is an orthonormal basis of l2(G). We state the
following basic facts without proofs.

1. The commutant, relative to B(l2(G)), of N (G) is {ρ(g)|g ∈ G}′′.

2. N (G) is a finite von Neumann algebra.

3. The vector state T 7→ 〈Tδe |δe〉l2(G) is a normal, faithful, tracial state on N (G) and is called
the von Neumann trace on N (G).

4. If G is an i.c.c.-group2, then N (G) is a factor of type II1.

2i.e. |{h−1gh|h ∈ G}| = ∞ for all g 6= e.



56 CHAPTER 2. SOME HOMOLOGY THEORY

For a more detailed description of group von Neumann algebras, and proofs of the the above
statements, we refer to [KR2] section 6.7.

Proposition 2.2.1. If G is a discrete group, then N (G×Gop) ' N (G)⊗̄N (G)op.

Proof. First note, that l2(G)⊗̄l2(Gop) is isomorphic to l2(G × Gop) via the unitary operator U
defined as the extension of δg ⊗ δhop 7→ δ(g,hop). Hence

AdU∗ : B(l2(G)⊗̄l2(Gop)) −→ B(l2(G×Gop)) (T 7→ UTU∗)

takes λg ⊗ λhop to λ(g,hop). Since AdU∗ is normal, it is an isomorphism from N (G)⊗̄N (Gop) to
N (G×Gop). Since N (Gop) ' N (G)op via extension of λgop 7→ λop

g , the result follows.

We now define the notion of group homology.

Definition 2.2.2. Let G be a discrete group and let M be a right module over CG. Define
C0(G,M) := M and

Cn(G,M) := M ⊗ (CG)⊗n for n ∈ N.
We define ∂n : Cn(G,M) −→ Cn−1(G,M) by

∂n : m⊗ g1 ⊗ · · · ⊗ gn 7−→ (mg1)⊗ g2 ⊗ · · · ⊗ gn

+
n−1∑
i=1

(−1)im⊗ g1 ⊗ · · · ⊗ gi−1 ⊗ gigi+1 ⊗ gi+2 ⊗ · · · ⊗ gn

+ (−1)nm⊗ g1 ⊗ · · · ⊗ gn−1.

Then (C∗(G,M)) is a complex (Lemma 2.1.2) and we define the group homology of G with
coefficients in M , to be the homology of this complex.

The complex (C∗(G,M), ∂∗) is called the Eilenberg- Mac Lane complex.

Lemma 2.2.3. [Lod] Let M be a CG-bimodule. We then give M a new structure of a right
CG-module, by setting

m · g := g−1mg.

When M is considered as a right CG-module with respect this action, we denote it by M̃ to
avoid confusion. Then the Hochschild homology H∗(CG,M) is isomorphic to the group homology
H∗(G, M̃).

Proof. Consider the Hochschild complex (C∗(CG,M), b∗) and define ϕn : Cn(CG,M) → Cn(G, M̃)
by

ϕn : m⊗ g1 ⊗ · · · ⊗ gn 7−→ (g1 · · · gnm)⊗ g1 ⊗ · · · ⊗ gn,
where we used the bimodule structure on M to define the product g1 · · · gnm.
We now claim that this is an isomorphism of complexes. Each ϕn is clearly bijective, so we only
have to prove that ϕn is compatible with the boundary-maps. Consider again the face-maps
dn0 , . . . , d

n
n from Example 2.1.3, used to define the Hochschild boundary map, and let δn0 , . . . , δ

n
n

denote the obvious face-maps corresponding to ∂n. For i ∈ {1, . . . , n− 1} we then get

ϕn−1 ◦ dni (m⊗ g1 ⊗ · · · ⊗ gn) = ϕn−1(m⊗ g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn)
= (g1 · · · gnm)⊗ g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn)
= δni ϕn(m⊗ g1 ⊗ · · · ⊗ gn).

In the case i = 0, we get

ϕn−1 ◦ dn0 (m⊗ g1 ⊗ · · · ⊗ gn) = ϕn−1(mg1 ⊗ g2 ⊗ · · · ⊗ gn
= (g2 · · · gnmg1)⊗ g2 ⊗ · · · ⊗ gn
= (g−1

1 g1 · · · gnmg1)⊗ g2 ⊗ · · · ⊗ gn
= δn0 (g1 · · · gnm)⊗ g1 ⊗ · · · ⊗ gn
= δn0 ◦ ϕn(m⊗ g1 ⊗ · · · ⊗ gn)
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A similar computation shows that ϕn−1d
n
n = δnnϕn. In particular, (ϕn)n∈N is a morphism of com-

plexes.

In the language of homological algebra, the group homology has the following description.

Proposition 2.2.4. [Lod] Let M be a right CG-module. If C is considered as a left CG-module
with respect to the trivial action3, then

H∗(G,M) ' TorCG
∗ (M,C).

Proof. We view CG as a right module over itself and consider the complex (C(G,CG), ∂∗). This
complex is acyclic, (which can bee seen by an argument similar to the one used to prove acyclicity
of the bar-complex) and the map

CG 3
n∑
i=1

λigi 7−→
n∑
i=1

λi ∈ C,

is an augmentation of the complex. Each Cn(G,CG) = (CG)⊗(n+1) is a free left CG-module,
when endowed with the action of multiplication on the first factor. Hence, (C∗(G,CG), ∂∗) is a
free resolution of C in the category of left CG-modules.
If we apply the functor M ⊗ CG− to this resolution, the homology of the induced complex is

TorCG
∗ (M,C).

On the other hand, the induced complex is (in degree n) M ⊗ CG ⊗ CG⊗(n+1) and applying the
natural isomorphism

M ⊗ CG ⊗CG⊗(n+1) 3 m⊗ g0 ⊗ g1 ⊗ · · · ⊗ gn 7−→ mg0 ⊗ g1 ⊗ · · · ⊗ gn ∈M ⊗CG⊗n,

yields an isomorphism of complexes from (M ⊗CGC∗(G,CG), 1⊗∂∗) to (C∗(G,M), ∂∗). Since the
latter complex (by definition) computes the group homology, the claim follows.

Recall that CG is a subalgebra of N (G) via the inclusion
∑
i αigi 7→

∑
i αiλgi

and we may
therefore use M = N (G) in the definition of group homology.
Note also, that in this case, each Hp(G,N (G)) has structure of a left N (G)-module in the
following way: Each group in the Eilenberg- Mac Lane complex N (G) ⊗ (CG)n is an N (G)-
module, with respect to the action of multiplication on the first factor. This action commutes with
the boundary maps and hence pass down to an action on the homology groups H∗(G,N (G)).
This allows us to make the following definition.

Definition 2.2.5. For any p ∈ N0, the p’th L2-homology of G is defined as

H(2)
p (G) := Hp(G,N (G)),

and we define the p’th L2-Betti number of G as

β(2)
p (G) := dimN (G)(H(2)

p (G)),

where the dimension is taken with respect to the von Neumann trace on N (G).

2.3 Induction for group von Neumann algebras

Let H be a discrete group and let G be a subgroup of H. We denote by ι the inclusion G ⊆ H
and want to prove that ι extends to an injective ∗-algebra-homomorphism ι : N (G) → N (H).
More precisely, we want to show the following.

3I.e. gz = z for each g ∈ G and z ∈ C.
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Proposition 2.3.1. [KR2] The map λg 7→ λι(g) (g ∈ G) extends to a ∗-algebra-isomorphism from
N (G) to N0 := W ∗({λι(g)|g ∈ G}) ⊆ N (H).

Proof. Put H := {δι(g)|g ∈ G}
l2(H)

⊆ l2(H) and let π denote the orthogonal projection in
B(l2(H)) onto H . Since the range of π is invariant under the action of each λι(g) it is also
invariant under the action of N0 and hence π ∈ N ′

0 , where the commutatant is taken relative to
B(l2(H)). Let Cπ denote the central carrier of π, 4 and recall that ([KR1] Prop. 5.5.2)

rg (Cπ) = span{N ′
0 π(l2(H))}.

Since N ′
0 ⊇ N (H)′ = W ∗(ρ(H)) (see e.g [KR2] Thm. 6.7.2) and π(δι(e)) = δι(e) we get

rg(Cπ) = span{N ′
0 π(l2(H))} ⊇ {ρh(δι(e))|h ∈ H} = l2(H),

and therefore Cπ = 1. The map

N0 = N0Cπ 3 ACπ
ψ // Aπ ∈ N0π ⊆ B(H ),

is a ∗-algebra-isomorphism ([KR1] Prop. 5.5.6) and we now show that N (G) is isomorphic to
N0π, where the latter is considered a subalgebra of B(H ).
The map δg 7→ δι(g) extends to a unitary U : l2(G) → H and for T :=

∑n
i=1 ziλι(gi) ∈ N0 we get

U∗(Tπ)U =
n∑
i=1

ziλgi ∈ N (G).

By normality of AdU : S 7→ U∗SU , we see that U intertwines the action of N0π on H with the
action of N (G) on l2(G). Then ψ−1 ◦ AdU∗ : N (G) → N0 is a ∗-algebra-isomorphism and for
any g ∈ G we have

ψ−1 ◦AdU∗(λg) = ψ−1(UλgU∗) = ψ−1(λι(g)π) = λι(g).

Hence ψ−1 ◦AdU∗ has the desired properties.

Remark 2.3.2. With the notation from the above proof, we have that

ϕ := ψ−1 ◦AdU∗ : N (G) −→ N (H),

is an injective ∗-algebra-homomorphism. Moreover, ϕ preserves the von Neumann trace, since for
T ∈ N0 = rg(ϕ) we have

〈Tδι(e) |δι(e)〉l2(H) = 〈TπUδe |Uδe〉l2(H) = 〈U∗(Tπ)Uδe |δe〉l2(G) = 〈ϕ−1(T )δe |δe〉l2(G)

Note in particular, that Theorem 1.5.1 applies and gives rise to an exact, dimension-preserving,
functor

Mod(N (G)) 3 X 7−→ N (H)⊗N (G)X ∈ Mod(N (H)).

4I.e. the smallest central projection in N ′
0 that contains π.



Chapter 3

L2-Homology for finite von
Neumann Algebras

3.1 Definitions and basic results

The aim of this section, is to introduce the notion of L2-homology and L2-Betti numbers for von
Neumann algebras, as defined by Connes and Shlyakhtenko in [CS03]. As it turns out, the chosen
way to do this works equally well in a slightly more general set-up and we therefore start with the
following definition.

Definition 3.1.1. Let A be a unital (complex) ∗-algebra and assume moreover that there exists
a functional τ : A → C with the following properties.

• τ is a faithful state, in the sense that τ(1) = 1 and for all a ∈ A we have τ(a∗a) ≥ 0 and
τ(a∗a) = 0 only if a = 0.

• τ is a trace, in the sense that τ(ab) = τ(ba) for all a, b ∈ A .

• For all a ∈ A there exists Ca > 0 such that

τ(x∗a∗ax) ≤ Caτ(x∗x) for all x ∈ A .

We will refer to such an algebra as a (unital) tracial ∗-algebra.

The reason for the above definition is, that it is exactly what is needed to get a representation
of A as bounded operators on the Hilbert space provided by the GNS-construction with respect
to τ . This is explained in more details in the following.
If we consider a tracial ∗-algebra (A , τ), the relation

〈a |b〉 := τ(b∗a),

defines a faithful, positive definite, sesquilinear form on A , where faithful and positive definite
here means that 〈a |a〉 ≥ 0 and 〈a |a〉 = 0 only if a = 0. The pair (A , 〈·|·〉) is therefore a pre-
Hilbert space and we denote by L2(A , τ) the Hilbert space completion of (A , 〈·|·〉). Denote by η
the inclusion of A into L2(A , τ) and put ξ0 := η(1). Note, that the map η(a) 7→ η(a∗) extends
to an anti-unitary J : L2(A , τ) → L2(A , τ) in exactly the same way as in Section 1.2.
For each a ∈ A , a linear map π(a) : η(A ) → η(A ) is defined by π(a)η(x) := η(ax) and the last

59
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requirement on τ (from Definition 3.1.1) implies that π(a) is bounded with respect to the norm
‖ · ‖2 induced by 〈·|·〉. This is because

‖π(a)η(x)‖2
2 = ‖η(ax)‖2

2 = τ(x∗a∗ax) ≤ Caτ(x∗x) = Ca‖η(x)‖2
2.

Thus, π(a) extends to a bounded operator (also denoted π(a)) on L2(A , τ).
One easily checks, that π : A → B(L2(A , τ)) (mapping a to π(a)) is an injective unital ∗-algebra-
homomorphism. Denote by M the von Neumann algebra in B(L2(A , τ)) generated by π(A ).
From now on we identify A with its isomorphic image under π and to simplify notation we put
L2(A ) := L2(A , τ).

Lemma 3.1.2. The tracial state τ : A → C extends to a faithful, normal, tracial state on M .

Proof. We first note, that τ(a) = 〈aξ0 |ξ0〉 and since ωξ0 : x 7→ 〈xξ0 |ξ0〉 is a vector-state (in
particular normal) on M , we only need to see that ωξ0 is faithful and tracial.
Let x, y ∈ M be given and choose nets (xi), (yj) in A , converging weakly to x and y respectively.
We then get

ωξ0(xy) := 〈xyξ0 |ξ0〉
= lim

i
〈xiyξ0 |ξ0〉

= lim
i

lim
j
〈yjξ0 |x∗i ξ0〉

= lim
i

lim
j
τ(xiyj)

= lim
i

lim
j
τ(yjxi)

= lim
i

lim
j
〈yjxiξ0 |ξ0〉

= lim
i
〈xiξ0 |y∗ξ0〉

= ωξ0(yx),

and hence that ωξ0 is tracial.
To see that ωξ0 is faithful on M , consider any x ∈ M and assume that

0 = ωξ0(x
∗x) = 〈xξ0 |xξ0〉 = ‖xξ0‖2

2,

and hence that xξ0 = 0. Since ξ0 is cyclic for A , it is in particular cyclic for M and hence
separating for M ′. By copying the proof of Proposition 1.2.2 we see that JxJ ∈ M ′ and by the
choice of x we get

(JxJ)ξ0 = Jxξ0 = 0.

Therefore JxJ = 0 and hence x = J(JxJ)J = 0.

In the sequel we will often also use the symbol τ , to denote the extension ωξ0 |M of τ to M .
Note, that because of Lemma 3.1.2, the von Neumann algebra tensor-product M ⊗̄M op is also
endowed with a faithful, normal, tracial state τ ⊗ τop, with the property that

τ ⊗ τop(x⊗ yop) := τ(x)τ(y) for all x ∈ M , y ∈ M op.

(This was also proven in Proposition 1.2.9) Note also, that M ⊗̄M op has structure of an A -
bimodule, with respect to the action

aT := T (1⊗ aop) and Ta := T (a⊗ 1),

where we think of A ⊗A op as a subalgebra of M ⊗̄M op.
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Definition 3.1.3. With the above notation, the p’th L2-homology of A is defined as the Hochschild
homology

H(2)
p (A , τ) := Hp(A ,M ⊗̄M op). (p ∈ N0)

Each Cp(A ,M ⊗̄M op) in the Hochschild complex is a left M ⊗̄M op-module with respect to the
action of multiplication on the first factor and since the Hochschild boundary maps commutes with
this action, each H(2)

p (A , τ) inherits the structure of a left M ⊗̄M op-module.
This allows us to define the p’th L2-Betti number of A as

β(2)
p (A , τ) := dimM ⊗̄Mop(H(2)

p (A , τ)),

where the dimension is the extended dimension function from Chapter 1, arising from the trace
τ ⊗ τop on M ⊗̄M op.

The results of Chapter 2 provides us with the following alternative description of the L2-
homology:

Lemma 3.1.4. The p’th L2-homology H
(2)
p (A , τ) is equal to TorA⊗A op

p (M ⊗̄M op,A ), where
M ⊗̄M op is considered a right A ⊗A op-module via the inclusion A ⊗A op ⊆ M ⊗̄M op.

Proof. This follows directly from Corollary 2.1.9.

3.2 Computational results

The results of Chapter 2 provides us with two (isomorphic) projective resolutions, with which we
can compute the L2-homology of a tracial ∗-algebra A ; namely the bar-resolution (Cbar

∗ (A ), b′∗)
and the Hochschild complex (C∗(A ,A ⊗A op, b∗). We shall primarily use the latter resolution
and will refer also to this, as the bar-resolution of A .
Although these resolutions tells us how to compute the L2-homology, this is not a very explicit
description. In this section we will give more explicit discriptions of the L2-homology in some
special cases and develop formulas to compute the corresponding L2-Betti numbers.
We first relate the L2-homology of groups, to the L2-homology of their corresponding group-
algebras.

Let G be a countable discrete group and consider the diagonal embedding ι : G→ G×Gop given
by g 7→ (g, (g−1)op). Recall from Proposition 2.3.1, that ι extends to a ∗-algebra-homomorphism
from N (G) into N (G×Gop) and that N (G×Gop) can be considered a right N (G)-module via
the homomorphism ι. If we consider CG as a (dense) subalgebra of N (G), and τ denote the von
Neumann trace T 7→ 〈Tδe |δe〉, then the pair (CG, τ) fulfills the requirements in Definition 3.1.1
and the following holds.

Proposition 3.2.1. [CS03] The L2-homology of G is related to the L2-homology of (CG, τ) in the
following way:

H
(2)
k (CG, τ) = N (G×Gop)⊗N (G)H

(2)
k (G) = ι∗(H

(2)
k (G))

β
(2)
k (CG, τ) = β

(2)
k (G)

Proof First note, that N (G×Gop) = N (G)⊗̄N (G)op by Proposition 2.2.1.
Also note, that the restriction of ι to CG gives rise to a right CG-module structure on N (G)⊗̄N (G)op,
which coincides with the right CG-module structure introduced in Lemma 2.2.3. Applying the
result of Lemma 2.2.3 yields

H
(2)
k (CG, τ) := Hk(CG,N (G)⊗̄N (G)op) = Hk(G,N (G)⊗̄N (G)op). (∗)
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Next we consider the group L2-homology H
(2)
k (G). To compute this, we choose a resolution

(Fi, fi)∞i=0 of the trivial CG-module C by free CG-modules and the L2-homology of G is then the
homology of the complex

· · · 1⊗fn+1−→ N (G)⊗ CGFn
1⊗fn−→ · · · · · · 1⊗f2−→ N (G)⊗ CGF1

1⊗f1−→ N (G)⊗ CGF0 −→ 0.

We now apply the induction-functor ι∗ := (N (G)⊗̄N (G)op)⊗N (G)− to this complex. Since ι∗
is an exact (additive) functor, the homology of the induced complex is just

ι∗(H
(2)
k (G)) = (N (G)⊗̄N (G)op)⊗N (G)H

(2)
k (G).

(see e.g. [CE] Chp. IV, Thm. 7.2) On the other hand; the module in degree k in the induced
complex is

(N (G)⊗̄N (G)op)⊗N (G)N (G)⊗ CGFk,

with boundary-map (1⊗ 1)⊗ 1⊗ fk and if we apply the canonical isomorphism

N (G)⊗̄N (G)op ⊗N (G)N (G)⊗ CGFk
∼−→ N (G)⊗̄N (G)op ⊗ CGFk

in each degree, the resulting complex is (in degree k)

(N (G)⊗̄N (G)op)⊗ CGFk,

with boundary map (1⊗ 1)⊗ fk.
By definition, this complex computes Hk(G,N (G)⊗̄N (G)op) and combining this with the equa-
tion (∗) now gives

H
(2)
k (CG, τ) = ι∗(H

(2)
k (G)).

The equality of the corresponding L2-Betti numbers now follows from Theorem 1.5.1, since

β
(2)
k (G) := dimN (G)H

(2)
k (G)

= dimN (G×Gop) ι∗(H
(2)
k (G))

= dimN (G)⊗̄N (G)op H
(2)
k (CG, τ)

=: β(2)
k (CG, τ).

Consider any von Neumann algebra M , acting on a Hilbert space H , and a non-zero projection
p ∈ M . Then pM p is a von Neumann algebra in B(pH ) (see e.g. [KR1] Prop. 5.5.6) and if M
has a normal, faithful, tracial state τ , then 1

τ(p)τ |pMp is a normal, faithful, tracial state on pM p.
In the following section we prove a formula relating the L2-homology of M with that of the
compressed algebra pM p, in the case where M is a (finite) factor.

3.2.1 Compression formula for finite factors

Throughout this section, M denotes a finite factor with (unique, normal, faithful) tracial state
τ , and p denotes a non-trivial projection in M of trace α ∈]0, 1]. Before stating and proving the
compression formula (Theorem 3.2.8) we need some results, concerning the relationship between
the projective modules over M and the projective modules over pM p. To this end, we first note,
that if V is module over M , then the set pV is module over pM p with respect to the restricted
action.

Lemma 3.2.2. The module pM is finitely generated and projective as a module over pM p.
Therefore, for any projective M -module V the pM p-module pV is also projective.
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Proof. We have pM = pM 1. Since M is a factor, any two projections can be compared and
hence we can split 1 as an orthogonal sum r +

∑n
i=1 pi where pi ∼ p for all i and r ∼ r′ ≤ p.

(Note, that since τ(1) = 1 and τ(pi) = τ(p) = α the sum has to be finite)
Thus, the pM p-module pM decomposes as

pM = pM r ⊕
( n⊕
i=1

pM pi

)
.

By construction of the pi’s, we can find partial isometries vi ∈ M with v∗i vi = pi and viv∗i = p.
Because of this, the map

pM pi 3 pxpi
fi7−→ pxpiv

∗
i = pxv∗i p ∈ pM p

is bijective and clearly compatible with the left actions of pM p. That is, fi is an isomorphism of
pM p-modules. Hence

pM ' pM r ⊕ (
n⊕
i=1

pM p), (as pM p-modules)

Since ⊕ni=1pM p is free over pM p, it suffices to see that pM r is projective.
By replacing r with a suitable equivalent projection (the r′ above), we may assume that r ≤ p
and hence we get

pM r = pM (pr) = (pM p)r,

Thus pM r is projective and the first part of the lemma is proven.

To prove the last statement, we let V be any projective M -module. Then M (X) ' V ⊕W for
a suitable set X and M -module W .
Since p(M (X)) = (pM )(X) and pM (X) ' pV ⊕ pW (as pM p-modules), the pM p-module pV is
a direct summand in (pM )(X). Because pM is projective over pM p, (pM )(X) is also projective
over pM p.
Thus, pV is a direct summand in a projective pM p-module and hence projective.

The following lemma will be needed in the proof of Proposition 3.2.4 below, but is also of in-
terest in it self, since it shows that the finitely generated projective modules over a finite factor,
can be described in a particular simple form.

Lemma 3.2.3. Let V be a finitely generated projective module over M . Then V is isomorphic
to ⊕ki=1M qi, for some k ∈ N and some projections q1, . . . , qk ∈ M . Moreover, for any non-zero
projection p ∈ M we can choose k ∈ N and q1, . . . , qk such that τ(qi) ≤ τ(p) for all i ∈ {1, . . . , k}.

In the proof, τ denotes also the induced trace-state on Mk(M ), given by

τ({aij}ki,j=1) :=
1
k

k∑
i=1

τ(aii).

Proof. Since V is finitely generated and projective we can find a projection p ∈Mk(M ) such that
V ' M kp. Because Mk(M ) is also a factor, we can split p as a sum of projections p1 + · · ·+ pk,
such that τ(pi) ≤ 1

k for all i ∈ {1, . . . , k}.
Let ei denote the k × k-matrix over M given by

(ei)st =
{

1, s = t = i;
0, otherwise.
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Since τ(pi) ≤ τ(ei) = 1
k we have pi ∼ fi ≤ ei for a suitable subprojection fi of ei. By construction

of ei, the subprojection fi must have all but the (i, i)’th entrance equal zero and some projection
qi ∈ M in the (i, i)’th position. Then

V ' M kp '
k⊕
i=1

M kpi '
k⊕
i=1

M kfi '
k⊕
i=1

M qi.

To prove the last statement, let p ∈ M be given. If M is a type I factor, we can split each qi into
a sum of minimal projections which of course all have minimal trace. If M is type II1 we can
halve each qi in the sense that there exist q′i, q

′′
i such that qi = q′i + q′′i and q′i ∼ q′′i . In particular

τ(q′i) = τ(q′′i ) =
1
2
τ(qi),

so by successively halving the qi’s we can achieve that their traces are all smaller than τ(p).

Recall that p ∈ M is a projection of trace α. The following holds.

Proposition 3.2.4. For any M -module V we have

dimpMp(pV ) =
1
α

dimM (V ).

Proof. Assume first that V is finitely generated and projective over M . By Lemma 3.2.3, the
module V is then (up to isomorphism) of the form

k⊕
i=1

M qi,

for some projections qi ∈ M and (also by Lemma 3.2.3) we may assume that τ(qi) ≤ τ(p) for each
i ∈ {1, . . . k}. Since τ is faithful, we have qi ∼ pi ≤ p for some suitable subprojections pi of p and
therefore

pV '
k⊕
i=1

pM qi '
k⊕
i=1

pM pi =
k⊕
i=1

(pM p)pi.

Hence

dimpMp(pV ) =
k∑
i=1

1
τ(p)

τ(pi) =
1

τ(p)

k∑
i=1

τ(pi) =
1

τ(p)

k∑
i=1

τ(qi) =
1
α

dimM (V ).

We now consider the general case, where V is any M -module, and choose a finitely generated
projective submodule W ⊆ V . By what is already proven, pW is finitely generated an projective
over pM p and α dimpMp(pW ) = dimM (W ). Hence

dimpMp(pV ) ≥ 1
α

dimM (V ).

For the opposite inequality, it suffices to see that if T ⊆ pV is finitely generated and projective
over pM p, then T has the form pW for some finitely generated projective M -module W .
By Lemma 3.2.3, there exist projections s1, . . . , sl ∈ pM p ⊆ M such that

T '
l⊕

j=1

(pM p)sj = p(
l⊕

j=1

M (psj)).
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Since sj ∈ pM p it commutes with p and hence psj is a projection in M . Therefore ⊕lj=1M (psj)
is finitely generated and projective over M and hence T has the desired form.

The next lemma is a technical detail, which will be needed in the proof of Theorem 3.2.8.

Lemma 3.2.5. Put N := M ⊗M op, N := M ⊗̄M op and q := p⊗ pop. Then q is a projection
in N ⊆ N and the multiplication map

ϕ : qN q⊗ qNqqN −→ qN

qxq⊗ qy 7−→ qxqy,

is an isomorphism of left qN q-modules. Here qN q⊗ qNqqN is considered as a left qN q-module,
with respect to the action of multiplication on the first factor.

For the proof we need a few observations.

Observation 3.2.6. Let R and S be unital ∗-rings, and let X be an (S,R)-bimodule. If p, q ∈ R
are self-adjoint idempotents, and there exists v ∈ R with v∗v = p and vv∗ = q, then Xp is
isomorphic (as a left S-module) to Xq.

Proof. It is straightforward to show that Xp 3 xp 7−→ xpv∗ = xv∗q ∈ Xq is an isomorphism.

We now assume to be under the hypothesis of Lemma 3.2.5. Then the following holds

Observation 3.2.7. For any projection e ∈ N with e ≤ q, the multiplication map

ϕ : qN q⊗ qNqqNe −→ qN e,

is an isomorphism of left qN q-modules.

Proof. Given qxe ∈ qN e we have qxe = qxqe = ϕ(qxq ⊗ q1e), and thus ϕ is surjective. To prove
injectivity, assume that

0 = ϕ(
∑
i

qxiq⊗ qyie) =
∑
i

qxiqyie.

Then ∑
i

qxiq⊗ qyie =
∑
i

qxiq⊗ qyiqeq

=
∑
i

qxiqyie⊗ e

= (
∑
i

qxiqqyie)⊗ e

= 0.

Proof of Lemma 3.2.5 First note that the following diagram commutes

qN q⊗ qNqqN //

ϕ

��

qN q⊗ qNqqNq
⊕
qN q⊗ qNqqN(1− q)

(ϕ,ϕ)

��
qN // qN q

⊕
qN (1− q)
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On the right-hand side of this diagram, the map ϕ is clearly an isomorphism on the first coordinate,
so the proof is finished once we prove that this is also the case on the second coordinate. Write

1− q = (1− p)⊗ pop + p⊗ (1− p)op + (1− p)⊗ (1− p)op.

Since M is a II1-factor, we can split 1 − p as an orthogonal sum of projections, all of which are
sub-equivalent to p. Thus 1− q can be written as

∑
n rn ⊗ sopn where

∀n∃vn ∈ M , r′n ≤ p : v∗nvn = rn and vnv∗n = r′n

∀n∃uop
n ∈ M op, s′opn ≤ pop : (uop

n )∗uop
n = sopn and uop

n (uop
n )∗ = (sopn )′

A direct computation shows that fn := rn ⊗ sopn ∼ r′n ⊗ sopn
′ =: gn inside N , via the partial

isometry zn := vn ⊗ uop
n . We thus get

qN q⊗ qNqqN(1− q) '
⊕
n

qN q⊗ qNqqNfn

'
⊕
n

qN q⊗ qNqqNgn (by Obs. 3.2.6)

'
⊕
n

qN gn (by Obs. 3.2.7)

'
⊕
n

qN fn (by Obs. 3.2.6)

' qN (
∑
n

fn)

= qN (1− q)

By tracing a vector through the composition of these isomorphisms, it is easy to see that the total
composition equals ϕ.

We are now able to prove the main theorem of this section. Recall that M denotes a finite
factor with tracial state τ and p ∈ M is a projection of trace α. Then the following holds.

Theorem 3.2.8 (Compression Formula). [CS03] Let τp denote the restriction of τ to pM p.
Then the L2-homology of M and that of the compressed factor pM p are related in the following
way.

H(2)
n (pM p,

1
α
τp) = (p⊗ pop)H(2)

n (M , τ) and β(2)
n (pM p,

1
α
τp) =

1
α2
β(2)
n (M , τ),

for all n ∈ N0.

Proof. Consider the bar-resolution (C(M ,M ⊗M op), bn)∞n=0 of M and the projection
q := p ⊗ pop ∈ M ⊗ M op. Define N := M ⊗ M op, N := M ⊗̄M op and put F (V ) := qV ∈
Mod(qNq), for V ∈ Mod(N). For any Mod(N)-morphism f : V → V ′ we have f(qx) = qf(x) for
all x ∈ V and hence such a morphism restricts to a Mod(qNq)-morphism

F (f) := f |qV : F (V ) → F (V ′).

In this way, F is turned into a covariant functor from Mod(N) to Mod(qNq), with the following
properties:

• F is exact. To see this, we consider an exact sequence V ′
f→ V

g→ V ′′ of N -modules. The
induced sequence then is

qV ′
F (f)−→ qV

F (g)−→ qV ′′
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Obviously the restrictions F (f) and F (g) of f and g has F (g)F (f) = 0. Conversely, if
x ∈ ker(F (g)) = qV ∩ ker(g), then, by exactness of the original sequence, x = fx′ for some
x′ ∈ V ′ and since x ∈ qV we have

x = qx = qfx′ = f(qx′) ∈ rg (f |qV ′) = rg(F (f)).

• F (M ) = qM = pM p.

• F preserves projectivity. To see this, we first note that pM is finitely generated and projec-
tive over pM p, by Lemma 3.2.2. Similarly popM op is finitely generated and projective over
popM oppop = (pM p)op.
Thus, for suitable n,m ∈ N and R ∈ Mod(pM p), S ∈ Mod(popM oppop) we have

(pM p)n ' pM ⊕R and (popM oppop)m ' popM op ⊕ S,

and therefore

(qNq)nm = (p⊗ pop(M ⊗M op)p⊗ pop)nm

' (pM p)n ⊗ (popM oppop)m

' (pM ⊕R)⊗ (popM op ⊕ S)

' (pM ⊗ popM op)⊕
(
(pM ⊗ S)⊕ (R⊗ popM op)⊕ (R⊗ S)

)
.

From this it follows, that qN := pM ⊗ popM op is projective over qNq = pM p⊗ (pM p)op.

Continuing with an argument similar to the one given in Lemma 3.2.2 (the last 5 lines), we
see that F maps projective N -modules to projective qNq-modules.

Hence, by applying F to the (free) resolution (C∗(M , N), b∗) of M we get a resolution of pM p
by projective qNq-modules, with which we can compute the relevant Tor-groups.
Since (pM p)⊗̄(popM oppop) = qN q, this shows that H(2)

∗ (pM p, 1
ατp) can be computed as the

homology of the complex

((qN q)⊗ qNq(qN ⊗M⊗n) , id⊗ bn)∞n=0

The qN q-isomorphism ϕ : qN q⊗ qNqqN → qN , (from Lemma 3.2.5) given by

qxq⊗ qy 7−→ qxqy,

gives rise to an isomorphism of complexes

ϕ⊗ idM⊗∗ : ((qN q)⊗ qNqqN ⊗M⊗∗, id⊗ b∗)
∼−→ (qN ⊗M⊗∗, b∗).

Note, that the right-most complex is exactly (F (C∗(M ,N )), F (b∗)).
Since F is an exact (additive) functor, the homology of the right-most complex above is therefore
F (H(2)

∗ (M , τ)) = qH
(2)
∗ (M , τ). (see e.g. [CE] Ch. IV, Thm. 7.2)

Hence H(2)
∗ (pM p, 1

ατp) = qH
(2)
∗ (M , τ).

The claimed identity for the Betti numbers now follows from Proposition 3.2.4, since

τ ⊗ τ(q) = τ ⊗ τ(p⊗ pop) = τ(p)2 = α2.
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3.2.2 Direct sums

We now want to see how L2-homology and L2-Betti numbers behaves with respect to direct sums.
For this, we return to the general set-up, of unital tracial ∗-algebras, as defined in the beginning
of this chapter.

Proposition 3.2.9 (Sum-formula). [CS03] Let (Ai, τi)ni=1 be a finite family of unital tracial
∗-algebras and put A := ⊕ni=1Ai. Choose a family α1, . . . , αn ∈]0, 1[ with

∑n
i=1 αi = 1 and endow

A with the normalized faithful trace τ , given by

τ(a1, . . . , an) :=
n∑
i=1

αiτi(ai)

Then, for any p ∈ N0, we have

H(2)
p (A , τ) '

n⊕
i=1

H(2)
p (Ai, τi) and β(2)

p (A , τ) =
n∑
i=1

α2
iβ

(2)
p (Ai, τi)

Proof. Define Kp(A ) := ⊕ni=1Cp(Ai,A e
i ) and dp := (b(1)p , . . . , b

(n)
p ), where b(i)p denotes the p’th

boundary map in the Bar-resolution of Ai.
Since each (C∗(Ai,A e

i ), b(i)∗ ) is acyclic, the complex (K∗(A ), d∗) is also acyclic.
Each Ai ⊗A op

j can be considered a left module over A ⊗A op via the action x1

...
xn

⊗

 yop
1
...
yop
n

 a⊗ bop := (xi ⊗ yop
j )(a⊗ bop) = xia⊗ yop

j b
op, (a⊗ bop ∈ Ai ⊗A op

j )

and in particular each Cp(Ai,A e
i ) becomes a left A ⊗A op-module, with respect to this action

on the first factor. Being the direct sum of the A ⊗A op-modules Cp(A1,A e
1 ), . . . , Cp(An,A e

n );
Kp(A ) also has structure as a left A ⊗A op-module. Explicitly, the A ⊗A op-action on Kp(A )
is given by  x1

...
xn

⊗

 yop
1
...
yop
n

 (c1, . . . , cn) := ((x1 ⊗ yop
1 )c1, . . . , (xn ⊗ yop

n )cn), (∗)

for (x1, . . . , xn), (y1, . . . , yn) ∈ A and (c1, . . . , cn) ∈ Kp(A ).
We now claim, that Kp(A ) is projective over A ⊗A op. Each Cp(Ai,A e

i ) is free over Ai ⊗A op
i

and therefore isomorphic to (Ai⊗A op
i )(Xi) for a suitable set Xi. Putting X := X1

∐
· · ·

∐
Xn we

have
⊕ni=1(Ai ⊗A op

i )(Xi) ' (⊕ni=1Ai ⊗A op
i )(X),

(where the isomorphism is isomorphism between A ⊗A op-modules) and hence

n⊕
i=1

Cp(Ai,A
e
i ) '

( n⊕
i=1

Ai ⊗A op
i

)(X)

.

It now suffices to see that (⊕ni=1Ai ⊗A op
i )(X) is projective over A ⊗A op.

Since A ⊗A op ' ⊕ni,j=1Ai ⊗A op
j , the A ⊗A op-module (A ⊗A op)(X) splits as

(A ⊗A op)(X) = (
n⊕
i=1

Ai ⊗A op
i )(X) ⊕ (

n⊕
i=1
i 6=j

Ai ⊗A op
j )(X),
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and, being a direct summand in a free A ⊗A op-module, (⊕ni=1Ai⊗A op
i )(X) is therefore projective

as an A ⊗A op-module. Thus, Kp(A ) is projective as an A ⊗A op-module.

By what was just proven, the complex (K∗(A ), b∗) is a resolution of ⊕ni=1Ai =: A by projective
A ⊗A op-modules and we now use this resolution to compute the L2-homology of A .
Denote by ei the element

(0, . . . , 0, 1i, 0, . . . , 0) ∈ A ,

where 1i is the unit in Ai and is placed in the i’th coordinate.
Let Mi be the von Neumann algebra generated by Ai in the GNS-representation with respect
to τi and let M be the von Neumann algebra generated by A , in the GNS-representation with
respect to τ. The map

ητi
(Ai) 3 ητi

(x) 7−→ 1
√
αi
ητ (0, . . . , 0, x, 0 . . . , 0) ∈ ητ (A ),

extends to an isometry from L2(Ai, τi) to eiL
2(A , τ), which intertwines the action of Ai with

the action of A on the subspace eiL2(A ). It therefore gives rise to an isomorphism ϕi from Mi

to eiM . If we identify eiL
2(A , τ)⊗̄eopj L2(A , τ)c with ei ⊗ eopj L

2(A , τ)⊗̄L2(A , τ)c, we get an
isomorphism

ϕi ⊗ϕop
j : Mi⊗̄M op

j −→ (ei ⊗ eopj )M ⊗̄M op,

such that

τi ⊗ τop
j (T ) =

1
αiαj

τ ⊗ τ(ϕi ⊗ϕop
j (T )).

In the following we will suppress the isomorphisms ϕ1, . . . , ϕn and simply identify Mi with eiM
and Mi⊗̄M op

j with ei ⊗ eopj (M ⊗̄M op).

Claim 1 The two complexes(
(M ⊗̄M op)⊗ A eK∗(A ), 1⊗ (⊕ni=1b

(i)
∗ )

)
and ( n⊕

i=1

Mi⊗̄M op
i ⊗ A e

i
C∗(Ai,A

e
i ), ⊕ni=11⊗ b

(i)
∗

)
,

are isomorphic as complexes of left M ⊗̄M op-modules.
Here

⊕n
i=1 Mi⊗̄M op

i ⊗ A e
i
C∗(Ai,A e

i ) is considered as an M ⊗̄M op-module, with respect to the
action given by the analogue of the formula (∗).

Proof of Claim 1: Consider any p ∈ N0 and an elementary tensor
T ⊗ (c1, . . . , cn) ∈ M ⊗̄M op ⊗ A eKp(A ). We note that

∑n
i,j=1 ei ⊗ eopj is the unit in M ⊗̄M op

and from this we get

T ⊗ (c1, . . . , cn) =
n∑

i,j=1

(Tei ⊗ eopj )⊗ (c1, . . . , cn)

=
n∑

i,j=1

(Tei ⊗ eopj )⊗ (ei ⊗ eopj (c1, . . . , cn)) (ei ⊗ eopj projection in A ⊗A op)

=
n∑
i=1

(Tei ⊗ eopi )⊗ (0, . . . , 0, ci, 0, . . . , 0)
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We now define

ϕp : (M ⊗̄M op)⊗ A eKp(A ) −→
n⊕
i=1

Mi⊗̄M op
i ⊗ A e

i
Cp(Ai,A

e
i ),

on the elementary tensor T ⊗ (c1, . . . , cn), by setting

ϕp(T ⊗ (c1, . . . , cn)) =
(
(Te1 ⊗ eop1 )⊗ c1, . . . , (Ten ⊗ eopn )⊗ cn

)
,

and extend by additivity.
A direct computation reveals that ϕp is well-defined, M ⊗̄M op-linear and commutes with the
differentials. From the above calculation it follows that ϕk is bijective and hence an isomorphism
of complexes.

From Claim 1 we get

H(2)
p (A , τ) = TorA e

p (M ⊗̄M op,A ) '
n⊕
i=1

TorA e
i

p (Mi⊗̄M op
i ,Ai) =

n⊕
i=1

H(2)
p (Ai, τi).

This finishes the proof of the sum-formula for the L2-homology of A .

To see the claimed identity for the L2-Betti numbers, we prove the following (slightly) more
general fact.

Claim 2: If W1, . . . ,Wn are modules over M1⊗̄M op
1 , . . . ,Mn⊗̄Mn respectively, then each Wi

can be considered as an M ⊗̄M op-module, with respect to the action

Tw := (T (ei ⊗ eopi ))w, (†)

for T ∈ M ⊗̄M op and w ∈ Wi. Let W := ⊕ni=1Wi be the direct sum of these M ⊗̄M op-modules.
Then

dimM ⊗̄Mop(W ) =
n∑
i=1

α2
i dimMi⊗̄Mop

i
(Wi).

Proof of Claim 2: By additivity of the extended dimension function, (Theorem 1.4.7) we get

dimM ⊗̄Mop(W ) =
n∑
i=1

dimM ⊗̄Mop(Wi),

so it suffices to show that dimM ⊗̄Mop(Wi) = α2
i dimMi⊗̄Mi

(Wi) for each i ∈ {1, . . . , n}. We now
fix an arbitrary i ∈ {1, . . . , n}. Assume first that Wi is finitely generated and projective over
Mi⊗̄M op

i and hence (up to isomorphism) of the form (Mi⊗̄M op
i )mp for some idempotent matrix

p := {pst}ms,t=1 ∈Mm(Mi⊗̄M op
i ).

For z ∈ Mi⊗̄M op
i , we will denote by zp the matrix {zpst}ns,t=1. Since pst = (ei ⊗ eopi )pst for all

s, t ∈ {1, . . . , n} we get

(x1, . . . , xm)p = (x1, . . . , xm)((ei ⊗ eopi )p) = ((ei ⊗ eopi )x1, . . . , (ei ⊗ eopi )xm)p,

for all (x1, . . . , xn) ∈ (M ⊗̄M op)m. The identity-mapping on (M ⊗̄M op)p may therefore be
considered as a map from (M ⊗̄M op)mp to (Mi⊗̄M op

i )mp and written as

id : (x1, . . . , xm)p 7−→ (ei ⊗ eopi )(x1, . . . , xm)p.
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This is clearly an isomorphism from (M ⊗̄M op)mp with standard left M ⊗̄M op-action to (Mi⊗̄M op
i )p

with the M ⊗̄M op-action given by the formula (†) in Claim 2.
So, as a module over M ⊗̄M op, Wi is isomorphic to (M ⊗̄M op)mp and we conclude that

dimM ⊗̄Mop(Wi) =
m∑
k=1

τ ⊗ τop(pkk)

=
m∑
k=1

α2
i τi ⊗ τ

op
i (pkk) (since pkk ∈ Mi⊗̄M op

i )

= α2
i dimMi⊗̄Mop

i
(Wi).

This shows, that if Wi is finitely generated and projective over Mi⊗̄M op
i , then the same is true

whenWi is considered as a module over M ⊗̄M op and we have dimM ⊗̄Mop(Wi) = α2
i dimMi⊗̄Mi

(Wi).
Thus, for any Mi⊗̄M op

i -module Wi, we have

dimM ⊗̄Mop(Wi) ≥ α2
i dimMi⊗̄Mop

i
(Wi).

To see the opposite inequality, it suffices to prove the following:

Let Wi be any Mi⊗̄M op
i -module. If S is an Mi⊗̄Mi-submodule of Wi, which is finitely

generated and projective when considered as a module over M ⊗̄M op, then S is also finitely
generated and projective as an Mi⊗̄M op

i -module and

dimM ⊗̄Mop(S) = α2
i dimMi⊗̄Mop

i
(S).

Assume that S is projective as an M ⊗̄M op-module and choose a suitable idempotent
p ∈Mm(M ⊗̄M op) and an M ⊗̄M op-isomorphism

ϕ : S −→ (M ⊗̄M op)mp.

Since ei ⊗ eopi is the unit in Mi⊗̄M op
i , it follows that

ϕ(x) = ϕ(ei ⊗ eopi x) = ei ⊗ eopi ϕ(x),

for all x ∈ S. Since ϕ is surjective, we conclude that

(M ⊗̄M op)mp = (ei ⊗ eopi )(M ⊗̄M op)mp = (ei ⊗ eopi M ⊗̄M op)m(ei ⊗ eopi p) = (Mi⊗̄Mi)m(ei ⊗ eopi p).

Since ϕ in particular is Mi⊗̄Mi-linear, it provides us with an isomorphism of Mi⊗̄M op
i -modules,

from S to (Mi⊗̄M op
i )(ei ⊗ eopi p). In particular S is projective as an Mi⊗̄M op

i -module. Since we
have

(M ⊗M op)mp = (ei ⊗ eopi )(M ⊗̄M op)mp = (M ⊗̄M op)m(ei ⊗ eopi p),

we may use ei ⊗ eopi p to compute the dimension of S over M ⊗̄M op and we get

dimM ⊗̄Mop(S) =
m∑
k=1

τ ⊗ τop(ei ⊗ eopi pkk)

=
m∑
k=1

α2
i τi ⊗ τ

op
i (ei ⊗ eopi pkk)

= α2
i dimMi⊗̄Mop

i
S.

This finishes the proof of Claim 2.

The formula for the L2-Betti numbers of A now follows from Claim 2, once we note that the
M ⊗̄M op action on ⊕ni=1H

(2)
p (Ai, τi) given by Claim 2, is intertwined with the natural M ⊗̄M op-

action on H(2)
p (A , τ) via the isomorphism arising from Claim 1.
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With both the compression formula and the sum formula at our disposal, we are able to com-
pute all Betti numbers of finite von Neumann algebras, with finite linear dimension over C.
So, let M be a finite von Neumann algebra with center C , endowed with a normal, faithful, tracial
state τ . Assume moreover, that M has finite linear dimension over C. Because of this, the center
of M is isomorphic to Cn for some n ∈ N. Let ei be the projection in C corresponding to the i’th
standard basis-vector of Cn. Then e1 + · · · + en = 1 and M = ⊕ni=1eiM and since the center of
eiM is eiC , each summand eiM is a factor. Of coarse eiM is also of finite linear dimension over
C and hence isomorphic to Mni(C) for suitable ni ∈ N.
So, up to isomorphism, we now have M = ⊕ni=1Mni

(C). Let 1ni
denote the identity-matrix in

Mni
(C) and note that ei = (0, . . . , 0, 1ni

, 0, . . . , 0) ∈ M , where the 1ni
is in the i’th coordinate.

Proposition 3.2.10. [CS03] With M = ⊕ni=1Mni
(C) as above and αi := τ(ei), we have

β(2)
p (M , τ) =

{ ∑n
i=1

α2
i

n2
i
, when p = 0;

0, when p ≥ 1.

We let trk denote the normalized standard trace on Mk(C).

Proof. Since M = ⊕ni=1Mni
(C) we have M ⊗̄M op = M⊗M op and all L2-homology in dimensions

higher than zero vanishes, since those are (isomorphic to) the homology-groups of the acyclic Bar-
complex.
To prove the formula for the zero’th Betti number, we first note that

H
(2)
0 (C, id) := C⊗Cop/〈λ⊗ 1− 1⊗ λop|λ ∈ C〉 ' C⊗Cop,

and hence β(2)
0 (C, id) = 1. We now consider the i’th summand Mni(C) and the projection

p =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈Mni(C),

and note that trni
(p) = 1

ni
.

Since pMni
(C)p ' C, the compression-formula gives

1 = β
(2)
0 (pMni

(C)p,
1

1/ni
trni

|pMni
p) =

1
(1/ni)2

β
(2)
0 (Mni

(C), trni
) = n2

iβ
(2)
0 (Mni

(C), trni
).

Under the isomorphism of M with ⊕ni=1Mni
(C), the trace τ corresponds to the trace

(X1, . . . , Xn) 7−→
n∑
i=1

αitrni(Xi),

and the sum-formula now implies

β
(2)
0 (M , τ) =

n∑
i=1

α2
iβ

(2)
0 (Mni(C), trni) =

n∑
i=1

α2
i

n2
i

.
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3.2.3 L2-homology as an inductive limit

One of the difficulties, connected with the computation of Hochschild homology, is the size of the
modules appearing in the Hochschild complex. These are typically not finitely generated and this
makes it difficult to determine the homology-groups in concrete cases.
We now describe a family of (finitely generated) subcomplexes of the Hochshild complex and show
that the L2-homology can be computed as the inductive limit of the finitely generated homology-
groups, associated with this family of subcomplexes. A similar technique will be taken to use in
Section 3.5, where we will take a closer look at the first Betti number.

Proposition 3.2.11. [CS03] Let (A , τ) be a unital tracial ∗-algebra and let M denote the von
Neumann algebra generated by A in the GNS-representation with respect to τ .
There exists a directed family of subcomplexes, (C(i)

∗ (A ), b(i)∗ )i∈I , of the Hochschild complex
(C∗(A ,M ⊗̄M op), b∗), with the following properties.

• For each i ∈ I and n ∈ N, C(i)
n (A ) is finitely generated and free as an M ⊗̄M op-module.

• If ϕji denotes the homomorphism of complexes C
(i)
∗ (A ) −→ C

(j)
∗ (A ) when j ≥ i and

H
(i)
∗ (A ) denotes the homology of the complex (C(i)

∗ (A ), b∗(i)), then

H(2)
n (A , τ) = lim

−→
(H(i)

n (A ), ϕji∗),

where ϕji∗ denotes the map in homology induced by ϕji.

Furthermore, β(2)
n (A , τ) = supi infj≥i dimM ⊗̄Mop

(
ϕji∗H

(i)
n (A )

)
.

Proof. We first construct the family of subcomplexes. Take any finite set E ⊆ A and any n ∈ N
and define

V E,n := spanC(E) and V E,n0 := (V E,n)⊗n.

Let µ : A ⊗A → A be the multiplication map and define recursively

V E,nm := spanC

(
{(µ⊗ 1⊗(n−1−m))V E,nm−1 , (1⊗ µ⊗ 1⊗(n−2−m))V E,nm−1 , . . . , (1

⊗(n−1−m) ⊗ µ)V E,nm−1}
)
,

for m ∈ {1, . . . , n− 1}. We then define

C
(E,n)
k (A ) =


M ⊗̄M op, when k = 0;
M ⊗̄M op ⊗ V E,nn−k , when 1 ≤ k ≤ n;
0, when k > n.

Since each V
(E,n)
m has finite linear dimension over C, each C

(E,n)
k (A ) is finitely generated as

a module over M ⊗̄M op. Note also, that the Hochschild boundary map bk maps C(E,n)
k (A )

into C(E,n)
k−1 (A ), such that (C(E,n)

∗ (A ), b∗) is a subcomplex of (C∗(A ,M ⊗̄M op), b∗). Denote by

H
(E,n)
∗ (A ), the homology of the complex (C(E,n)

∗ (A ), b∗).
Let I denote the set of such pairs (E,n) and put an ordering on I by requiring that

(E,n) � (E′, n′) iff E ⊆ E′ and n ≤ n′.

If i = (E,n) � j = (E′, n′) we have that (C(E,n)
∗ (A ), b∗) is a subcomplex of (C(E′,n′)

∗ (A ), b∗).
Let ϕji denote the inclusion-map and denote by ϕji∗ the morphism induced by ϕji on the level
of homology. Then, since each ϕji is an inclusion, we have ϕkj∗ ◦ ϕji∗ = ϕki∗ when i � j � k.
So, the system (H(i)

n (A ))i∈I has an inductive limit Hn(A ) and we now have to prove that this
inductive limit is isomorphic to H(2)

n (A , τ).
For each i ∈ I we have an inclusion of complexes ψi : (C(i)

∗ (A ), b∗) → (C∗(A ,M ⊗̄M op), b∗) and
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hence an induced morphism ψi∗ : H(i)
n (A ) → H

(2)
n (A , τ).

Clearly the ψi∗ ’s are compatible with the ϕji∗ ’s, in the sense that ψj∗ ◦ϕji∗ = ψi∗ , and by Propo-
sition 1.4.12 the proof is complete if we can show that H(2)

n (A , τ) = ∪i∈Iψi∗(H
(i)
n (A )).

But this follows, since Cn(A ,M ⊗̄M op) = ∪i∈IC(i)
n (A ).

Since each C
(E,n)
n (A ) is finitely generated over M ⊗̄M op the same is true for the homology

groups and by Theorem 1.4.7 we therefore have

dimM ⊗̄Mop

(
ϕji∗(H(i)

n (A ))
)
<∞.

By applying Theorem 1.4.13 the formula for the Betti numbers now follows.

3.3 The zero’th Betti number

In this section we want to give a more explicit descriptions of the zero’th L2-homology and Betti
number. This description arises from the fact that we have good access to the zero’th L2-homology,
because of the simplicity of the last boundary map in the Hochschild complex.
Let M be a finite von Neumann algebra, endowed with a normal, faithful, tracial state τ and
recall that H(2)

0 (M , τ) := M ⊗̄M op/rg (b1), where b1 is given by

M ⊗̄M op ⊗M 3 T ⊗ c b17−→ T (c⊗ 1− 1⊗ cop) ∈ M ⊗̄M op.

Lemma 3.3.1. [CS03] The zero’th L2-homology H
(2)
0 (M , τ) is isomorphic, as an M ⊗̄M op-

module, to
M ⊗̄M op ⊗M eM .

Proof. Consider the M ⊗̄M op-morphism

ϕ : M ⊗̄M op −→ M ⊗̄M op ⊗M eM ,

given by T 7→ T ⊗ 1. One easily checks that ϕ vanishes on rg(b1) and hence ϕ factorizes through
a morphism ϕ̃ : H(2)

0 (M , τ) → M ⊗̄M op⊗M eM . A direct computation now shows, that the map
ψ : M ⊗̄M op ⊗M eM → H

(2)
0 (M , τ) given by

ψ(T ⊗ a) = [T (a⊗ 1)],

is well-defined and inverse to ϕ̃. Here [T (a⊗ 1)] denotes the coset in H
(2)
0 (M , τ) represented by

T (a⊗ 1).

Lemma 3.3.2. [KR2] Let (H , 〈·|·〉) be a Hilbert space and consider a unit vector x in H . Assume
moreover that α1, . . . , αn ∈]0, 1[ has sum 1 and that x1, . . . , xn ∈ (H )1 := {ξ ∈ H | ‖ξ‖ ≤ 1}
such that

α1x1 + · · ·+ αnxn = x.

Then x = xi for each i ∈ {1, . . . , n}.

Proof. We prove the Lemma by induction on n, starting with the case n = 2.
So assume α1, α2 ∈]0, 1[ with sum 1 and that x = α1x1 + α2x2. Then

1 = 〈x |x〉 = 〈x |α1x1 + α2x2〉 = α1〈x |x1〉+ α2〈x |x2〉.
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Since 1 is an extremal point in {z ∈ C : |z| ≤ 1} this implies that 1 = 〈x |x1〉 = 〈x |x2〉. Therefore

〈x |x1〉 = 1 ≥ ‖x1‖ = ‖x1‖‖x‖ ≥ 〈x |x1〉. (†)

From (†) it follows that we have equality in the Cauchy-Schwartz inequality applied to x and x1

and this can only happen if x = λx1 for some λ ∈ [0,∞[. (see e.g. [KR1] Theorem 2.1.3) But (†)
also implies that ‖x1‖ = 1 = ‖x‖ and we conclude that x = x1.
By a symmetric argument, we also have x2 = x and the proof is complete in the case n = 2.
Assume now, that the result holds for some fixed n ∈ N and consider α1, . . . , αn+1 ∈]0, 1[ with
sum 1 and x1, . . . , xn+1 ∈ (H )1 with

∑n+1
i=1 αixi = x. We rewrite x as

x = (1− αn+1)
( α1

1− αn+1
x1 + · · ·+ αn

1− αn+1
xn

)
︸ ︷︷ ︸

=:ξ

+αn+1xn+1,

and since
∑n
i=1

αi

1−αn+1
= 1−αn+1

1−αn+1
= 1, we have ξ ∈ (H )1.

The result now follows from the induction hypothesis and the case n = 2.

Recall, that a von Neumann algebra is called hyper-finite, if it is the weak closure of the union of
an increasing family of finite dimensional subalgebras.
As the following theorem shows, the zero’th L2-homology detects hyper-finiteness. (Compare with
Theorem 3.4.5)

Theorem 3.3.3. [CS03] Let M be a factor of type II1 and let τ be the (unique, normal, faithful)
tracial state on M . Then H

(2)
0 (M , τ) 6= 0 if, and only if, M is hyperfinite.

For the proof we will need the following characterization if hyper-finiteness.

Proposition 3.3.4. [Con76] The factor M is hyperfinite if, and only if, there exists a state1

θ : M ⊗̄M op → C such that θ(x⊗ yop) = τ(xy) for all x, y ∈ M .

We omit the proof, since it would give rise to a rather big digression from the present subject
of L2-homology and L2-Betti numbers. A proof can be found in [Con76] Theorem 5.1. (the equiv-
alence of 1. and 5.)

Proof of Theorem 3.3.3. Assume first that M is hyperfinite and choose θ : M ⊗̄M op → C as
in Proposition 3.3.4. Let J be the left ideal in M ⊗̄M op generated by elements of the form
m⊗ 1− 1⊗mop for m ∈ M , such that H(2)

0 (M , τ) = M ⊗̄M op/J .
Consider any m ∈ M and put X := m⊗ 1− 1⊗mop. Then

θ(X∗X) = θ((m∗ ⊗ 1− 1⊗mop∗)(m⊗ 1− 1⊗mop))
= θ(m∗m⊗ 1−m∗ ⊗mop −m⊗mop∗ + 1⊗mop∗mop)
= τ(m∗m−m∗m−mm∗ +mm∗)
= 0.

Since θ is a state, we have (see e.g. [KR1] Proposition 4.3.1)

|θ(Y ∗X)| ≤ θ(X∗X)θ(Y ∗Y ) for all Y ∈ M ⊗̄M op,

and hence θ(Y X) = 0 for all Y ∈ M ⊗̄M op. Since J is the left ideal generated by elements of
the form X = m⊗ 1 − 1⊗mop it follows that θ|J = 0. Hence θ factorizes through a functional
θ̃ : H(2)

0 (M , τ) → C. Since θ 6= 0 we have θ̃ 6= 0 and this of course implies H(2)
0 (M , τ) 6= 0.

Assume conversely, that H(2)
0 (M , τ) 6= 0. We want to construct state θ on M ⊗̄M op as in

Proposition 3.3.4. Consider n unitaries u1, . . . , un ∈ M and the element

X :=
1
n

n∑
i=1

(ui ⊗ u∗opi − 1⊗ 1) =
1
n

n∑
i=1

(1⊗ u∗opi )(ui ⊗ 1− 1⊗ uop
i ) ∈ J .

1Note, that there is no normality-condition on θ
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Claim 1: There exists a state ϕ on M ⊗̄M op with ϕ(X∗X) = 0.

Proof of claim. Since J is a left ideal we have X∗X ∈ J and by assumption

0 6= H
(2)
0 (M , τ) := M ⊗̄M op/J .

Therefore X∗X can not be invertible in M ⊗̄M op and hence 0 ∈ σ(X∗X) ⊆ [0,∞[.
By continuous functional calculus (see e.g. [Arv] Theorem 2.3.1) we have C∗(X∗X, 1) ' C(σ(X∗X))
and on the latter C∗-algebra we can consider the functional ev0 given by

C(σ(X∗X)) 3 f 7−→ f(0) ∈ C.

Note, that ev0 is a state with ev0(idσ(X∗X)) = 0. Let ϕ be the corresponding state on C∗(X∗X, 1),
vanishing on X∗X. By the Hahn-Banach Theorem, ϕ extends to a functional, also denoted ϕ, on
M ⊗̄M op with the same norm. Thus, ‖ϕ‖ = ϕ(1) = 1 and hence ϕ is a state on M ⊗̄M op. (See
e.g. [KR1] Theorem 4.3.2) This extension has the desired property; and Claim 1 follows.

Let U (M ) denote the group of unitaries in M and let Pe(U (M )) denote the system of finite
subsets of U (M ). Then, by what we have just proven, for each I := {u1, . . . , un} ∈ Pe(U (M ))
we get an element XI := 1

n

∑n
i=1(ui ⊗ u∗opi − 1⊗ 1) ∈ J and a state ϕI on M ⊗̄M op vanishing

on X∗
IXI .

Claim 2: There exists a state ϕ on M ⊗̄M op vanishing on

{(u⊗ u∗op − 1⊗ 1)∗(u⊗ u∗op − 1⊗ 1) | u ∈ U (M )}.

Proof of claim. Ordering Pe(U (M ) by inclusion, we get a net (ϕI)I∈Pe(U (M )) in the unit
ball of (M ⊗̄M op)∗ and by the Alouglu-Bourbaki Theorem (see e.g. [KR1] Thm. 1.6.5) this unit
ball is weak-∗-compact. Hence (ϕI)I∈Pe(U (M )) contains a convergent sub-net (ϕIα)α∈A. Let ϕ
denote the weak-∗-limit of this sub-net and note that ϕ is state since each ϕIα

is a state. We now
aim to prove that ϕ has the desired property.
Let u ∈ U (M ) be given and consider any I := {u1, . . . , un} ∈ Pe(U (M )) with u ∈ I. By doing
the GNS-constuction with respect to ϕI we get a Hilbert space L2(M ⊗̄M op, ϕI).
Let ηI : M ⊗̄M op → L2(M ⊗̄M op, ϕI) denote the map sending x to the vector represented by x
in L2(M ⊗̄M op, ϕI). Since ϕI vanishes on X∗

IXI , we have ηI(XI) = 0 and hence

n∑
i=1

1
n
ηI(ui ⊗ u∗opi ) = η(1⊗ 1). (†)

Because ηI(1 ⊗ 1), ηI(u1 ⊗ u∗op1 ), . . . , ηI(un ⊗ u∗opn ) are all unit vectors in L2(M ⊗̄M op, ϕI) and
the left-hand side of (†) is a convex combination, it follows from Lemma 3.3.2 that

ηI(ui ⊗ u∗opi ) = ηI(1⊗ 1) for all i ∈ {1, . . . , n}

In particular ηI(u⊗ u∗op) = ηI(1⊗ 1) and hence

0 = ‖ηI(u⊗ u∗op − 1⊗ 1)‖2
2 = ϕI((u⊗ u∗op − 1⊗ 1)∗(u⊗ u∗op − 1⊗ 1)).

This proves that (ϕI)I∈Pe(U (M )) is zero on (u⊗ u∗op − 1⊗ 1)∗(u⊗ u∗op − 1⊗ 1) from a certain
point ({u}) and hence the same is true for the subnet (ϕIα)α∈A. Since ϕ is the weak-∗-limit of
(ϕIα)α∈A, we conclude that

ϕ((u⊗ u∗op − 1⊗ 1)∗(u⊗ u∗op − 1⊗ 1)) = 0,

and Claim 2 is proven.
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We now aim to prove, that the state ϕ from Claim 2 has the property from Proposition 3.3.4;
i.e. that

ϕ(x⊗ yop) = τ(xy) for all x ∈ M , yop ∈ M op.

Consider the GNS-construction L2(M ⊗̄M op, ϕ) with respect to ϕ and let η : M ⊗̄M op →
L2(M ⊗̄M op, ϕ) denote the map sending x to the vector represented by x. Put ξ := η(1 ⊗ 1)
and denote by 〈·|·〉 the inner product on L2(M ⊗̄M op, ϕ). To simplify notation, we will suppress
the (generally non-faithful!) GNS-representation of M ⊗̄M op on L2(M ⊗̄M op, ϕ).
By construction of ϕ, we have u⊗ u∗opξ = ξ for any u ∈ U (M ) and from this we get:

u⊗ u∗opξ = ξ

⇓
(1⊗ uop)(u⊗ u∗op) = (1⊗ uop)ξ

⇓
(u⊗ 1)ξ = (1⊗ uop)ξ.

Since every element in M can be written as a linear combination of four unitaries (see e.g. [KR1]
Theorem 4.1.7) we have

(m⊗ 1)ξ = (1⊗mop)ξ for all m ∈ M . (∗)

For any m,n ∈ M , we get from (∗) that

(mn⊗ 1)ξ = (m⊗ 1)(n⊗ 1)ξ = (m⊗ 1)(1⊗ nop)ξ = (m⊗ nop)ξ. (∗∗)

With these two identities established we are able to prove, that the state ϕ has the desired property.
For arbitrary m,n ∈ M we have

ϕ(m⊗ nop) = 〈m⊗ nopξ |ξ〉 = 〈(mn⊗ 1)ξ |ξ〉 = ϕ(mn⊗ 1). (∗ ∗ ∗)

Moreover,

ϕ(nm⊗ 1) = 〈(nm⊗ 1)ξ |ξ〉
= 〈n⊗mopξ |ξ〉 (by (∗∗))
= 〈(1⊗mop)(n⊗ 1)ξ |ξ〉
= 〈(n⊗ 1)ξ |(1⊗m∗op)ξ〉
= 〈(n⊗ 1)ξ |(m∗ ⊗ 1)ξ〉 (by (∗))
= 〈(mn⊗ 1)ξ |ξ〉
= ϕ(mn⊗ 1).

Let M ⊗ 1 denote the subalgebra {m⊗ 1 | m ∈ M } in M ⊗̄M op and note that this subalgebra is
isomorphic to M .
The above calculation shows, that the restriction of ϕ to M ⊗ 1 is a trace and since ϕ is a state,
we must have that ϕ(mn⊗ 1) = τ(mn), since the trace-state τ is unique.
Combining this with the equation (∗ ∗ ∗) we conclude that ϕ(m⊗ nop) = τ(mn) for all m ∈ M
and nop ∈ M op and hence that M is hyper-finite.

Consider again an arbitrary finite von Neumann algebra M , endowed with a faithful, normal,
tracial state τ .

Theorem 3.3.5. [CS03] Assume that M contains a normal element x, with the property that
associated spectral measure E : B(σ(x)) → B(L2(M )) has E({t}) = 0 for all t ∈ σ(x). Then
β

(2)
0 (M , τ) = 0.
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Here B(σ(x)) denotes the Borel σ-algebra on the spectrum of x.
Note, that the requirement E({t}) = 0 for all t ∈ σ(x) is equivalent to saying that x has no
eigenvalues.

Proof. Since τ is faithful, the GNS-construction provides us with a faithful normal representa-
tion of M on L2(M ) := L2(M , τ) and (as usual) we identify M with its isomorphic image in
B(L2(M )).
We proof the claim by contradiction. So, assume that β(2)

0 (M , τ) 6= 0. Since H(2)
0 (M , τ) is finitely

(singly) generated as a module over M ⊗̄M op, Lemma 1.4.8 gives

β
(2)
0 (M , τ) := dimM ⊗̄Mop(H(2)

0 (M , τ)) = dimM ⊗̄Mop

(
HomM ⊗̄Mop(H(2)

0 (M , τ),M ⊗̄M op)
)

Thus, β(2)
0 (M , τ) 6= 0 implies that there exists a non-zero M ⊗̄M op-linear map

ϕ : H(2)
0 (M , τ) → M ⊗̄M op.

Let J denote the left ideal in M ⊗̄M op generated by elements of the form m⊗1−1⊗mop where
m ∈ M . As an M ⊗̄M op-module, H(2)

0 (M , τ) := M ⊗̄M op/J is generated by [1⊗1]J and since
ϕ 6= 0 we must have ϕ([(1⊗ 1)]J ) 6= 0.
Consider the Hilbert space L2(M ⊗̄M op, τ ⊗ τ) =: L2(M ⊗̄M op) and the non-zero vector ξ ∈
L2(M ⊗̄M op), corresponding to the element ϕ([1⊗ 1]J ) ∈ M ⊗̄M op. For any m ∈ M we have

(m⊗ 1− 1⊗mop)ξ = (m⊗ 1− 1⊗mop)η
(
ϕ([(1⊗ 1]J )

)
= η

(
ϕ([m⊗ 1− 1⊗mop]J )

)
(ϕ is M ⊗̄M op-linear)

= 0, (m⊗ 1− 1⊗mop ∈ J )

which gives

(m⊗ 1)ξ = (1⊗mop)ξ for all m ∈ M . (†)

The isomorphism Ψ : L2(M ⊗̄M op, τ ⊗ τ) ' HS (L2(M )), from Proposition 1.2.12, maps ξ onto
a non-zero Hilbert-Schmidt operator T and (by Proposition 1.2.15) applying Ψ to the identity (†)
yields

mT = Tm for all m ∈ M . (‡)

Especially T commutes with x. By taking adjoints on both sides of (‡), we see that also T ∗

commutes with x.
Since Hilbert-Schmidt operators in particular are compact, T ∗T is a non-zero, positive, compact
operator commuting with x. Since T ∗T is compact, its spectrum is a discrete subset of [0,∞[ and
may be ordered as a decreasing sequence (λn)n∈N converging to 0 and since T ∗T 6= 0, λn 6= 0 for
at least one n ∈ N.
Let Hn denote the eigenspace corresponding to the eigenvalue λn and let Pn denote the orthogonal
projection onto Hn. Since each Pn is a spectral projection of T ∗T , it commutes with x and hence
xn := x|Hn is a bounded normal (since x is normal) operator on Hn.
For λn 6= 0 the space Hn is a non-trivial finite-dimensional space (see e.g. [MV] Prop. 15.12) and
hence Hn has a basis consisting of eigenvectors of xn.
These, in particular, are non-trivial eigenvectors for x, contradicting the choice of x.
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Definition 3.3.6. A normal element x ∈ M , satisfying the properties in Theorem 3.3.5, is called
an element with diffuse spectrum. So, x has diffuse spectrum exactly when the associated spectral
measure

E : B(σ(x)) → B(L2(M )),

has E({t}) = 0 for all t ∈ σ(x).

As we already noted, E({λ}) 6= 0 if, and only if, λ is an eigenvalue of x, so having diffuse
spectrum is equivalent to having no eigenvalues.

Remark 3.3.7. In the last part of the proof of Theorem 3.3.5 we actually proved the following
fact: If M ⊆ B(H ) contains an element with diffuse spectrum, then M ′ intersects trivially with
the compact operators on H . This observation will turn out useful later.

Corollary 3.3.8. [CS03] If M is a factor of type II1 then β
(2)
0 (M , τ) = 0.

One way of proving the Corollary, is to note that each II1-factor contains an element with
diffuse spectrum. Such an element can be constructed explicitly, as a weak limit of a sequence
consisting of weighted averages of projections.
We choose a slightly shorter proof, adapting the ideas from the proof of Theorem 3.3.5.

Proof. Assume, towards a contradiction, that β(2)
0 (M , τ) 6= 0. Then, as in the proof of Theo-

rem 3.3.5, there exists a non-zero M ⊗̄M op-linear map ϕ : M ⊗̄M op → M ⊗̄M op, vanishing at
elements of the form

m⊗ 1− 1⊗mop for m ∈ M .

Since ϕ 6= 0 and M ⊗̄M op-linear, we must have x := ϕ(1⊗ 1) 6= 0 and

(m⊗ 1)x = (1⊗mop)x,

for all m ∈ M . Consider any n ∈ N. Since M is a II1-factor, we can find n equivalent, orthogonal,
projections p1, . . . , pn with sum 1. We then get

x =
n∑
i=1

(pi ⊗ 1)x =
n∑
i=1

(pi ⊗ 1)2x =
n∑
i=1

(pi ⊗ 1)(1⊗ pop
i )x =

n∑
i=1

(pi ⊗ pop
i )x.

From this we see that

τ ⊗ τop(x∗x) = τ ⊗ τop
( n∑
i,j=1

(pi ⊗ pop
i x)

∗(pj ⊗ pop
j )x

)
=

n∑
i=1

τ ⊗ τop
(
x∗(pi ⊗ pop

i )x
)

=
n∑
i=1

τ ⊗ τop
(
(pi ⊗ pop

i )∗x∗x(pi ⊗ pop
i )

)
(τ ⊗ τop trace)

≤
n∑
i=1

‖x‖2
∞τ ⊗ τ

(
(pi ⊗ pop

i )∗(pi ⊗ pop
i )

)
(τ ⊗ τ state)

=
n∑
i=1

‖x‖2
∞τ(pi)τ

op(pop
i )

=
‖x‖2

∞
n

. (τ(pi) = 1
n = τop(pop

i ))

Since this holds for any n, we conclude that τ ⊗ τop(x∗x) = 0. But since τ ⊗ τop is faithful and
x 6= 0, this is a contradiction.
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As a consequence of Corollary 3.3.8 we see that if M is a factor of type II1, then H(2)
0 (M , τ)

contains no non-trivial, finitely generated, projective, M ⊗̄M op-submodules.
Note however, that since the extended dimension function is not faithful, we can not conclude
that the zero’th L2-homology vanishes. (Compare with Theorem 3.3.3)

Remark 3.3.9. Corollary 3.3.8 together with Proposition 3.2.10 gives us a formula for the zero’th
Betti number of any finite factor. More precisely, if M is a finite factor with (unique) tracial state
τ , then

β
(2)
0 (M , τ) =

{
1
n2 , if M is of type In;
0, when M is of type II1.

3.4 Betti numbers of the hyper-finite factor

In this section we introduce the so-called hyper-finite factor and use the the compression formula
to give an estimate of its L2-Betti numbers. The presented results (except Theorem 3.4.5) can all
be found, in more or less the same form, in [KR2] Chapter 10 and 11.

Put An := M2(C)⊗n and define ϕn : An → An+1 by

ϕn : x1 ⊗ · · · ⊗ xn 7−→ x1 ⊗ · · · ⊗ xn ⊗ 1,

where 1 denotes the unit matrix in M2(C). Note, that each ϕn is an injective and unital ∗-algebra-
homomorphism and let ϕmn denote the composition ϕm ◦ ϕm−1 ◦ · · · ◦ ϕn for m ≥ n. The system
(An, ϕn) defines a directed system of C∗-algebras and we denote by A its inductive limit and
by (αn)n∈N the corresponding sequence of (injective, unital ) ∗-algebra-homomorphisms from An
into A . Recall, that A is the norm-closure of ∪nrg (αn) (see e.g. [KR2] Proposition 11.4.1) and
denote by An the range rg(αn). Let tr denote the (unique) trace-state on M2(C). Then

tr⊗n := tr⊗ · · · ⊗ tr

is a trace-state on An and since each An is a finite factor, this trace-state is unique. Hence each
An has a unique trace-state, which we will also denote by tr⊗n.
For m ≥ n we have

tr⊗m ◦ ϕmn(x1 ⊗ · · · ⊗ xn) = tr⊗m(x1 ⊗ · · · ⊗ xn ⊗ 1⊗ · · · ⊗ 1)
= tr(x1) · · · tr(xn)tr(1) · · · tr(1)
= tr(x1) · · · tr(xn)
= tr⊗n(x1 ⊗ · · · ⊗ xn).

Because of this, we can define a functional τ on the algebra ∪nAn by setting

τ(αn(a)) := tr⊗n(αn(a)).

Since each tr⊗n is a state, and hence of norm 1, τ is a bounded linear functional and has therefore
a bounded extension (also denoted by τ) to all of A , of norm at most 1. Since τ(1) = tr(1) = 1,
we have that

‖τ‖ = 1 = τ(1),

and this implies that τ is a state. (see e.g. [KR1] Theorem 4.3.2) Any other trace-state on A
restricts to a trace-state on An and must therefore coincide with tr⊗n here. Thus, τ is the only
trace-state on A .
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Proposition 3.4.1. The inductive limit A is a simple C∗-algebra.

Proof. Assume J to be a proper, closed, two-sided ideal in A and let π denote the quotient-
mapping A → A /J . Since any matrix-algebra Mk(C) is simple, each An is simple and hence
we have either An ∩J = {0} or An ∩J = An. Since An contains the unit of A , and J is a
proper ideal, the latter case is impossible and we therefore have An ∩J = {0}.
This implies, that the restriction π|An : An −→ A /J is an injective ∗-algebra-homomorphism
and hence an isometry. Hence π|∪nAn is an isometry and since ∪nAn is dense in A , π is an
isometry — in particular injective. Thus J = {0}.

Corollary 3.4.2. The trace-state τ on A is faithful.

Proof. Put J = {a ∈ A |τ(a∗a) = 0}. For any a, b ∈ A we have

(a+ b)∗(a+ b) + (a− b)∗(a− b) = 2(a∗a+ b∗b),

and hence (a+ b)∗(a+ b) ≤ 2(a∗a+ b∗b) and from this it follows that J is a subspace of A .
Moreover, since a∗b∗ba ≤ ‖b‖2a∗a it follows that J is a left ideal and since τ is tracial, the same
relation implies that J is a right ideal.
So, if J 6= 0 its norm-closure J is a non-trivial, closed, two-sided ideal in A , which then have
to be all of A . But this is not possible, since for instance 1 = τ(1∗1), and we conclude that τ is
faithful.

Proposition 3.4.3. The C∗-algebra A can be faithfully represented as a strongly dense subalgebra
of a II1-factor.

Proof. Let πτ be the GNS-representation of A on L2(A ) := L2(A , τ). Then, since A is simple,
πτ is a faithful representation and we denote by M the strong closure of πτ (A ).
We now wish to show that M is a factor of type II1.
By Lemma 3.1.2, τ extends to a faithful, normal, tracial state on M and thus M is finite.
Let ρ be the (unique, normal) center-valued trace on M and assume that p is a non-zero central
projection in M . Choose moreover a unit vector x ∈ rg (p) and an arbitrary unit vector y ∈ L2(A )
and let ωx and ωy denote the corresponding (normal) vector-states.
Note, that ωx ◦ ρ and ωy ◦ ρ are both normal, tracial, states on M . Since A admits only one
trace-state, the restrictions of ωx ◦ ρ and ωy ◦ ρ to A must coincide and since A is ultra-weakly
dense in M , the normality of the two states implies that they must agree on all of M .
We have

ωx ◦ ρ(p) = 〈ρ(p)x |x〉 = 〈px |x〉 = 〈x |x〉 = 1
ωy ◦ ρ(p) = 〈ρ(p)y |y〉 = 〈py |y〉

Since y was an arbitrary unit vector, we conclude from this that 〈py |y〉 = 1 for every unit vector
y and hence

‖(1− p)y‖2
2 = 〈(1− p)y |(1− p)y〉 = 〈(1− p)y |y〉 = 1− 1 = 0.

Thus, p = 1 and hence M is a factor. Since A , and hence M , contains matrix-algebras of ar-
bitrarily large sizes, M can not be of type In for any n ∈ N and we conclude that M is type II1.

The factor M constructed above, is called the hyper finite factor. One can show, that every
other finite factor, containing an increasing family of matrix-algebras, are isomorphic to the one
constructed here. Hence the word ”the” in the name ”the hyperfinite factor”. This however, is
not particular relevant at this moment. See e.g. [KR2] Theorem 12.2.1.
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Theorem 3.4.4. The hyperfinite factor M is isomorphic to M2(M ).

Proof. Consider again the directed system (An, ϕn) from the beginning of this section and put
Bn := An+1 and ψn = ϕn+1, so that Bn = M2(C)⊗An.
Then (Bn, ψn) forms another directed system of C∗-algebras and we denote by B its inductive
limit and by (βn) the associated family of (injective, unital) ∗-algebra-homomorphisms from Bn
into B.
A straight forward argument, using the uniqueness of inductive limits, reveals the following two
facts.

• The inductive limit B is isomorphic to A .

• The inductive limit B is isomorphic to M2(C)⊗A .

(Note, that there is no ambiguity in writing M2(C)⊗A , since M2(C) is nuclear.) Because of this,
we get an isomorphism of A with M2(C)⊗A . Let N be the von Neumann algebra generated
by M2(C)⊗A in B(C2 ⊗L2(A )). Clearly N contains M2(C)⊗M and since the latter is a von
Neumann algebra we get that N = M2(C)⊗M . In particular, N is a factor of type II1.
We now need to see that M and N are isomorphic.
Let σ denote the unique tracial state on N , let πσ be the GNS-representation of N on L2(N , σ)
and let ξσ denote the cyclic trace-vector corresponding to the unit in N .
We now prove, that the image πσ(M2(C) ⊗ A ) is strongly dense in πσ(N ). To see this, let
πσ(n) ∈ πσ(N ) be given. Since M2(C)⊗A is strongly dense in N , we can find a bounded net
(xα) in M2(C)⊗A converging strongly to n. (the Kaplansky density Theorem)
Since πσ is a ∗-algebra-isomorphism, it is strongly continuous on bounded sets and hence (πσ(xα))
converges strongly to πσ(n).
From this it follows, that πσ(M2(C)⊗A )ξσ is dense in L2(N , σ). To see this, it suffices to check
that πσ(M2(C)⊗A )ξσ is dense in πσ(N )ξσ. By what was just proven, for any πσ(n) ∈ πσ(N ) we
can find a net (xα) in M2(C)⊗A such that (πσ(xα)) converges strongly to πσ(n). In particular
(πσ(xα)ξσ) converges to πσ(n)ξσ.

Since A 'M2(C)⊗A , we may consider the restrictions of πτ and πσ as two different represen-
tations π1, π2 of the C∗-algebra A , each having a cyclic vector ξ1 := ξτ and ξ2 := ξσ respectively.
Since ξ1 and ξ2 are unit trace-vectors for M = W ∗(π1(A )) and π2(N ) respectively, we must have

ωξ1 ◦ π1 = ωξ2 ◦ π2, (†)

since the trace-state on A is unique. We now claim, that the map π1(a)ξ1 7→ π2(a)ξ2 (a ∈ A ) is
well-defined and extends to a unitary from L2(A , τ) to L2(N , σ).
To see this, we first note, that for any a ∈ A we have

‖π1(a)ξ1‖2
2 = 〈π1(a)ξ1 |π1(a)ξ1〉

= 〈π1(a∗a)ξ1 |ξ1〉
= ωξ1 ◦ π1(a∗a)
= ωξ2 ◦ π2(a∗a) (By (†))
= ‖π2(a)ξ2‖2

2.

From this it follows that U : π1(A )ξ1 → π2(A )ξ2 given by π(a)ξ1 7→ π2(a)ξ2 is well-defined and
isometric. Since π1(A )ξ1 is dense in L2(A , τ) and π2(A )ξ2 is dense in L2(N , σ), U extends to
an isometri (and hence unitary) from L2(A , τ) onto L2(N , σ).
For any a, b ∈ A we have

Uπ1(b)(π1(a)ξ1) = Uπ1(ba)ξ1
= π2(ba)ξ2
= π2(b)π2(a)ξ2
= π2(b)U(π1(a)ξ1),
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and, by density of π1(A )ξ1, we have Uπ1(b) = π2(b)U .
So, U is unitary which intertwines the two representations of A . In particular it gives rise to a
∗-algebra-isomorphism (AdU∗) from M = W ∗(π1(A )) to W ∗(π2(A )) = πσ(N ).
Thus M and N are ∗-algebra-isomorphic and since N = M2(C)⊗M ' M2(M ), the proof is
complete.

With this information about the hyper-finite factor at our disposal, we are now able to (par-
tially) compute its L2-Betti numbers. The claim is the following.

Theorem 3.4.5. Each of the L2-Betti numbers of the hyper-finite factor M is either zero or
infinite.

Proof. Let n ∈ N0 be given and let τ denote the unique tracial state on M . We wish to prove
that β(2)

n (M , τ) ∈ {0,∞}
By Theorem 3.4.4, there exists a ∗-algebra-isomorphism ϕ : M → M2(M ). Let τ̃ be the trace-
state on M2(M ) given by

τ̃ :
(
m11 m12

m21 m22

)
7−→ 1

2
(τ(m11)) + τ(m22)),

and note that τ̃ ◦ ϕ = τ , since the trace-state on M is unique.

We now consider the projection p :=
(

1 0
0 0

)
∈M2(M ) of trace 1

2 .

By the compression formula (Theorem 3.2.8) we have

β(2)
n (pM2(M )p,

1
τ̃(p)

τ̃ |pM2(M )p) =
1

(τ̃(p))2
β(2)
n (M2(M ), τ̃) = 4β(2)

n (M2(M ), τ̃). (∗)

Since ϕ : M →M2(M ) is an isomorphism with τ = τ̃ ◦ ϕ we also get

β(2)
n (M , τ) = β(2)

n (M2(M ), τ̃). (∗∗)

On the other hand, the compressed algebra pM2(M )p is isomorphic to M (via
(
m 0
0 0

)
7→ m)

and under this isomorphism 1
τ̃(p) τ̃ |pM2(M )p corresponds to τ . From this we get

β(2)
n (pM2(M )p,

1
τ̃(p)

τ̃ |pM2(M )p) = β(2)
n (M , τ). (∗ ∗ ∗)

Substituting with (∗∗) and (∗ ∗ ∗) in the equation (∗) we arrive at the formula

β(2)
n (M , τ) = 4β(2)

n (M , τ),

and conclude that β(2)
n (M , τ) is either zero or infinite.

Note, that by Corollary 3.3.8 we must have β(2)
0 (M , τ) = 0.

Remark 3.4.6 (The Fundamental Group). Consider a II1-factor M and let τ denote the
trace-state on M . We then define

F0 := {τ(p)|p ∈ M is a projection with pM p ' M }.

We now prove that F0 is a multiplicative sub-semi-group in ]0,1]. Let λ, µ ∈ F0 and choose
projections p, q ∈ M , satisfying the isomorphism-condition, with τ(p) = λ and τ(q) = µ.
Choose a ∗-algebra-isomorphism α : M → pM p. Then α(q) is a subprojection of p and

λ = τ(q) =
1

τ(p)
τ(α(q)) =

1
µ
τ(α(q)).



84 CHAPTER 3. L2-HOMOLOGY FOR FINITE VON NEUMANN ALGEBRAS

To see that λµ ∈ F0, it is therefore sufficient to prove that α(q)Mα(q) ' M .
But this follows, since

M ' qM q ' α(q)α(M )α(q) = α(q)pM pα(q) = α(q)Mα(q),

where the last equality comes from the fact that α(q) ≤ p.
Clearly 1 ∈ F0 and hence F0 is a semi-group.
We denote by F the subgroup in (R+, ·) generated by F0. The group F is called the fundamental
group of the factor M .
Note, that if M has non-trivial fundamental group, then each of the L2-Betti numbers of M is
either zero or infinite, since the proof of Theorem 3.4.5 applies in this case.
In more details; if p ∈ M is a projection of trace α 6= 1 with pM p ' M , then the Compression
formula yields

β(2)
n (pM p,

1
α
τ |pMp) =

1
α2
β(2)
n (M , τ).

If ϕ : M → pM p is an isomorphism, then (since M is a factor) we must have 1
ατ |pMp = τ ◦ϕ−1

and hence
β(2)
n (pM p,

1
α
τ |pMp) = β(2)

n (M , τ).

Since α 6= 1, we conclude from this that β(2)
n (M , τ) ∈ {0,∞}. However, by Corollary 3.3.8 we

must have β(2)
0 (M , τ) = 0.

3.5 The first Betti number — Part I

In this section we focus on the first L2-Betti number of a finite von Neumann algebra M , with
faithful, normal tracial state τ . We construct a family of ”small” complexes, whose homology-
groups forms an inductive system with H(2)

1 (M , τ) as its inductive limit. Using this, we give some
estimates concerning the first L2-Betti number in some special cases.
Note, that we already gave one such description of H(2)

1 (M , τ) in Proposition 3.2.11. Since we
are only concerned with the first L2-homology, we can (as we shall see in a moment) do with a
simpler family of complexes, than the ones constructed in the proof of Proposition 3.2.11.

Consider a finite set F := {x1, . . . , xn} ⊆ M and denote by A the algebra generated by F .
Note, that we do not (yet) require A to be stable under the involution ∗.
Define C1(F ) := M ⊗M op ⊗ spanC(F ) and dF : C1(F ) → M ⊗M op by

dF (T ⊗ a) = T (a⊗ 1− 1⊗ aop).

Clearly dF commutes with the left action of M ⊗M op, so we get a complex of left M ⊗M op-
modules

0 −→ ker(dF ) ι−→ C1(F ) dF−→ M ⊗M op −→ 0,

where ι denote the inclusion map. We now apply the functor M ⊗̄M op ⊗ M e− to this complex
and get the following complex of left M ⊗̄M op-modules.

0 −→ M ⊗̄M op ⊗M e ker(dF ) 1⊗ι−→ M ⊗̄M op ⊗M eC1(F ) 1⊗dF−→ M ⊗̄M op ⊗M eM ⊗M op −→ 0.

We then define

H(F ) :=
ker(1⊗ dF )
rg (1⊗ ι)

and β(F ) := dimM ⊗̄Mop(H(F )),

where the dimension function dimM ⊗̄Mop(·) is the one arising from the trace-state τ ⊗ τop on
M ⊗̄M op.
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Lemma 3.5.1. [CS03] If A (the algebra generated by F ) is unital, then coker(dF ) := M e/rg (dF )
and M e ⊗ AeA are isomorphic as left M e-modules.

Proof. We apply the technique from Lemma 3.3.1. A direct calculation shows, that the M ⊗M op-
linear map ϕ : M e −→ M e ⊗ AeA given by T 7→ T ⊗ 1 is well-defined and vanishes on the
elements

xi ⊗ 1− 1⊗ xop
i for i ∈ {1, . . . , n}.

Since rg(dF ) is the ideal in M e generated by these elements, ϕ factorizes through a morphism

ϕ̃ : M e/rg (dF ) −→ M e ⊗ AeA.

As in Lemma 3.3.1, we wish to define a map ψ : M e ⊗ AeA −→ M e/rg (dF ) by the relation

ψ : T ⊗ a 7−→ [T (a⊗ 1)],

where the bracket indicates the coset in M e/rg (dF ) represented by T (a⊗ 1).
If ψ is well-defined, it is clearly a two-sided inverse of ϕ̃ and in this case the proof is complete. So,
we have to prove that ψ is well-defined. Consider the map ψ0 : M e ×A −→ M e/rg (dF ) given by

(T, a) 7−→ [T (a⊗ 1)].

This is clearly C-bilinear and to see that ψ is well-defined we just need to prove that

ψ0(T (
∑
i

ai ⊗ bopi ), x) = ψ0(T,
∑
i

aixbi),

for all T ∈ M e,
∑
i ai ⊗ b

op
i ∈ Ae and x ∈ A.

We have

ψ0(T (
∑
i

ai ⊗ bopi ), x)− ψ0(T,
∑
i

aixbi) =
[
T (

∑
i

ai ⊗ bopi )(x⊗ 1)− T
(
(
∑
i

aixbi)⊗ 1
)]

=
∑
i

[
T (aix⊗ bopi )− T (aixbi ⊗ 1)

]
=

∑
i

[
T (aix⊗ 1)

(
1⊗ bopi − bi ⊗ 1

)]
,

and since dF is M e-linear, it suffices to show that 1⊗ aop − a⊗ 1 ∈ rg (dF ) for every a ∈ A.
By the bilinearity of the tensor-product and the additivity of dF , it suffices to consider the case
when a has the form xi1 · · ·xik , with xi1 , . . . , xik ∈ F .
In this case we have

1⊗ xop
ik
· · ·xop

i1
− xi1 · · ·xik ⊗ 1 = xi1 · · ·xik−1 ⊗ x

op
k − xi1 · · ·xik ⊗ 1

+ xi1 · · ·xik−2 ⊗ x
op
ik
xop
ik−1

− xi1 · · ·xik−1 ⊗ x
op
ik

+ xi1 · · ·xik−3 ⊗ x
op
ik
xop
ik−1

xop
ik−2

− xi1 · · ·xik−2 ⊗ x
op
ik
xop
ik−1

...
+ 1⊗ xop

ik
· · ·xop

i1
− xi1 ⊗ x

op
ik
· · ·xop

i2
.

Each term in the above sum lies in rg (dF ) since

xi1 · · ·xik−j
⊗ xop

ik
· · ·xop

k−j+1 − xi1 . . . xik−j+1 ⊗ x
op
ik
· · ·xop

ik−j+2

= xi1 · · ·xik−j
⊗ xop

k · · ·xop
k−j+2

(
1⊗ xop

ik−j+1
− xik−j+1 ⊗ 1

)
,
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and the proof is complete.

Let Pe(M ) denote the system of finite subsets of M and order Pe(M ) by inclusion.
If F,G ∈ Pe(M ) with F ⊆ G, this inclusion extends to an inclusion

C1(F ) := (M ⊗M op)⊗ spanC(F )
ϕG,F

−→ (M ⊗M op)⊗ spanC(G) =: C1(G),

and since ϕG,F (ker(dF )) ⊆ ker(dG) we get a morphism of complexes

0 // ker(dF )
⊆ //

ϕG,F

��

C1(F )

ϕG,F

��

dF //M ⊗M op

id

��

// 0

0 // ker(dG)
⊆ // C1(G)

dG //M ⊗M op // 0

We therefore have an induced morphism

ϕG,F∗ : H(F ) → H(G).

Since each ϕG,F is an inclusion, we obviously have ϕH,G ◦ϕG,F = ϕH,F whenever F ⊆ G ⊆ H and
hence also ϕH,G∗ ◦ ϕG,F∗ = ϕH,F∗ . In this way (H(F ))F∈Pe(M ) is turned into an inductive system
of M ⊗̄M op-modules and the following holds.

Proposition 3.5.2. [CS03] We have H(2)
1 (M , τ) = lim

−→
H(F ) and

β
(2)
1 (M , τ) = sup

F∈Pe(M )

inf
G∈Pe(M )

G⊇F

dimM ⊗̄Mop

(
ϕG,F∗ (H(F ))

)
.

Proof. Consider the bar-resolution (Cn(M ,M e), bn)∞n=0 of M and the maps

1⊗ dF : M ⊗̄M op ⊗M eC1(F ) −→ M ⊗̄M op ⊗M eM e

1⊗ b1 : M ⊗̄M op ⊗M eC1(M ,M e) −→ M ⊗̄M op ⊗M eM e

Since dF and b1 is given by the same formula, we get an inclusion ker(1⊗ dF ) ⊆ ker(1⊗ b1) and
in particular a homomorphism

ψF : ker(1⊗ dF ) −→ ker(1⊗ b1)/rg (1⊗ b2) =: H(2)
1 (M , τ),

by composing the inclusion with the quotient-morphism.
Let

∑k
i=1 Ti ⊗ xi ∈ (M ⊗̄M op)⊗M e ker(dF ) be given and consider the element

(1⊗ ι)(
k∑
i=1

Ti ⊗ xi) =
k∑
i=1

Ti ⊗ ι(xi) ∈ M ⊗̄M op ⊗M eC1(F ) ⊆ M ⊗̄M op ⊗M eC1(M ,M e).

By exactness of the bar-resolution, each ι(xi) has the form b2(yi) for some yi ∈ C2(M ,M e) and
hence

(1⊗ ι)(
k∑
i=1

Ti ⊗ xi) =
k∑
i=1

Ti ⊗ b2(yi) = 1⊗ b2(
k∑
i=1

Ti ⊗ yk).

Thus, ψF induces a homomorphism

ψF∗ : H(F ) := ker(1⊗ dF )/rg (1⊗ ι) −→ H
(2)
1 (M , τ).
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Since ψF∗ is induced by the inclusion ker(1⊗ dF ) ⊆ ker(1⊗ b1), we see that

ψG∗ ◦ ϕG,F∗ = ψF∗ when F ⊆ G .

Because ∪F⊆MC1(F ) = C1(M ,M e) we get ∪F⊆M rg (ψF∗ ) = H
(2)
1 (M , τ) and by the uniqueness

of inductive limits the first claim in the proposition follows.

To prove the formula for the first Betti number, we prove that dimM ⊗̄Mop(H(F )) <∞ for all
F ⊆ M and the formula then follows from Theorem 1.4.13.
For this we first note that

dimM ⊗̄Mop(M ⊗̄M op ⊗M eC1(F )) = dimM ⊗̄Mop((M ⊗̄M op)⊗ spanC(F )) ≤ |F | <∞.

By construction, H(F ) fits into the short-exact sequence

0 −→ rg (1⊗ ι) −→ ker(1⊗ dF ) −→ H(F ) −→ 0,

and by additivity (Theorem 1.4.7) of the dimension function we see that

dimM ⊗̄Mop(H(F )) ≤ dimM ⊗̄Mop ker(1⊗ dF ) ≤ dimM ⊗̄Mop((M ⊗̄M op)⊗M eC1(F )) <∞.

As the above proposition shows, one way of getting access to the first Betti number, is by
computing the values of the family

dimM ⊗̄Mop(ϕG,F∗ (H(F ))),

where F ⊆ G ⊆ M . Hence the following definition.

Definition 3.5.3. We let H(G : F ) denote ϕG,F∗ (H(F )) and define

β(G : F ) := dimM ⊗̄Mop(ϕG,F∗ (H(G : F ))).

Remark 3.5.4. Note, that for any pair F,G ∈ Pe(M ) with F ⊆ G, we have
H(G : F ) ⊆ H(G) and therefore β(G : F ) ≤ β(G).
Also note, that

ϕG,F∗ (H(F )) ' ϕG,F (ker(1⊗ dF ))
ϕG,F (ker(1⊗ dF )) ∩ (rg (1⊗ ιG))

,

where ιG denotes the inclusion ker(dG) ⊆ C1(G).

In order to investigate the first Betti number further, it is convenient to introduce the notion
of Betti numbers of bimodule-maps. This is done in the following section.

3.6 Betti numbers of maps

We still assume that M is a finite von Neumann algebra, endowed with a fixed normal, faithful,
tracial state τ . Denote by L2(M ), L2(M op) and L2(M ⊗̄M op), the Hilbert spaces arising from
M , M op and M ⊗̄M op respectively, in the GNS-construction with respect to τ, τop and τ ⊗ τop.
Let n,m ∈ N be given and consider an M ⊗M op-linear map

f : (M ⊗M op)n −→ (M ⊗M op)m,
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and the induced map

1⊗ f : M ⊗̄M op ⊗M e(M ⊗M op)n −→ M ⊗̄M op ⊗M e(M ⊗M op)m

For each k ∈ N we have a canonical isomorphism of left M ⊗̄M op-modules
αk : M ⊗̄M op ⊗M e(M ⊗M op)k −→ (M ⊗̄M op)k, given by

αk : T ⊗ (x1, . . . , xn) 7−→ (Tx1, . . . , Txn).

Let fvN : (M ⊗̄M op)n → (M ⊗̄M op)n denote the map αm ◦ (1 ⊗ f) ◦ α−1
n and note that fvN

extends the map f . Since fvN is M ⊗̄M op-linear, it extends to a bounded M ⊗̄M op-equivariant
operator2

f (2) : L2(M ⊗̄M op)n −→ L2(M ⊗̄M op)m.

Consider ker(f) as a subspace of L2(M ⊗̄M op)n via the natural inclusions

(M ⊗M op)n ⊆ (M ⊗̄M op)n ⊆ L2(M ⊗̄M op)n,

and let ker(f) denote its closure in L2(M ⊗̄M op)n.
Then ker(f) is an M ⊗̄M op-invariant subspace of L2(M ⊗̄M op)n and hence a finitely generated
Hilbert M ⊗̄M op-module. Since f (2) is an M ⊗̄M op-equivariant operator its kernel is also a
finitely generated Hilbert M ⊗̄M op-module and since ker(f) ⊆ ker(f (2)), also the quotient

ker(f2)
ker(f)

,

is a finitely generated Hilbert M ⊗̄M op-module.
This allows us (See e.g. Definition 1.3.18) to define the Betti number of f as

β(f) := dimM ⊗̄Mop

(ker(f (2))
ker(f)

)
= dimM ⊗̄Mop(ker(f (2)))− dimM ⊗̄Mop(ker(f)),

where the last identity follows from additivity of the dimension function and Corollary 1.4.6. As
usual, the dimension dimM ⊗̄Mop(·) is the dimension function arising from the tensor-trace τ⊗τop

on M ⊗̄M op.
We now aim to give an algebraic description of the Betti number of f .
Let ι denote the inclusion ker(f) ⊆ (M ⊗M op)n and consider the complex

0 −→ M ⊗̄M op⊗M e ker(f) 1⊗ι−→ M ⊗̄M op⊗M e(M⊗M op)n
1⊗f−→ (M ⊗̄M op)⊗M e(M⊗M op)m −→ 0.

Then the following holds.

Proposition 3.6.1. [CS03] With the above notation we have

dimM ⊗̄Mop(ker(f (2))) = dimM ⊗̄Mop(ker(1⊗ f))
and

dimM ⊗̄Mop(ker(f)) = dimM ⊗̄Mop(rg (1⊗ ι)).

In particular

β(f) = dimM ⊗̄Mop

(ker(1⊗ f)
rg (1⊗ ι)

)
= dimM ⊗̄Mop(ker(1⊗ f))− dimM ⊗̄Mop(rg (1⊗ ι)).

2In the language of Chapter 1, f (2) is the map ν(fvN ).
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For the proof, some notation will be convenient:
Put N := M ⊗M op and N := M ⊗̄M op. In the proof of Proposition 3.6.1 we will make use
of the functor ν from Theorem 1.3.17 and hence it is practical to distinguish between N n as a
finitely generated projective N -module and N n as a subspace of L2(N )n. We therefore let η
denote the inclusion N n ⊆ L2(N )n and put K := η(ker(f)). In this notation, the second equality
in Proposition 3.6.1 becomes

dimN (K) = dimN (rg (1⊗ ι)).

The proof of Proposition 3.6.1 uses ideas from the proof of [Lüc98] Theorem 5.1

Proof of Proposition 3.6.1. We aim to prove that

dimN (ker(f (2))) = dimN (ker(1⊗ f)) and dimN (K) = dimN (rg (1⊗ ι)). (∗)

We first note, that the inclusion ι : ker(f) ⊆ Nn and the natural isomorphism
αn : N ⊗NN

n ∼−→ N n, gives rise to an N -linear map g := αn ◦ (1N ⊗ ι) : N ⊗N ker(f) → N n.
Let p ∈ B(L2(N )n) denote the orthogonal projection onto K. Since K is N -invariant, the
projection p is N -equivariant and we may therefore consider the map ν−1(p) : N n → N n. We
now prove that

rg(ν−1(p))) = rg(g)
alg
, (†)

where closure is the algebraic closure relative to N n. (See e.g. Definition 1.1.8)

”⊇” Let x ∈ ker(f) and T ∈ N be given. We then have

(1N n − ν−1(p)) ◦ g(T ⊗ x) = (1L2 − p)(η(Tx)) = Tη(x)− Tpη(x) = 0,

where the last two equalities come from the fact that p is N -equivariant and px = x.
Since N n (the target-space of 1N n − ν−1(p)) is N -projective, Lemma 1.1.9 implies that
ker(1N n − ν−1(p)) is closed. Thus,

rg (g)
alg

⊆ ker(1N n − ν−1(p)) = rg(ν−1(p)).

”⊆” Let ϕ ∈ HomN (N n,N ) be given and assume that ϕ vanishes on rg(g). We need to see
that ϕ vanishes on rg(ν−1(p)); or, equivalently, that ν(ϕ) ◦ p = 0.
Since ker(ν(ϕ)) is closed in L2(N )n and p is the projection onto K, it suffices to prove that
K ⊆ ker(ν(ϕ)).
But since K ⊆ η(rg (g)), this follows from the construction of ϕ. We now have

dimN (K) := dimN (ν−1(K))

= dimN (rg (ν−1(p)))

= dimN (rg (g)
alg

) (by (†))
= dimN (rg (g)) (by Thm. 1.4.7)
= dimN (αn(rg (1⊗ ι)))
= dimN (rg (1⊗ ι)), (αn isomorphism)

as desired.

To prove the first identity in (∗), we consider the following exact complex of finitely generated
Hilbert N -modules:

0 −→ ker(f (2)) ⊆−→ L2(N )n
f(2)

−→ L2(N )n.
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Since ν−1 preserves exactness, (Lemma 1.4.6) we get the following exact complex of finitely gen-
erated projective N -modules:

0 −→ ν−1(ker(f (2)))
ν−1(⊆)−→ N n ν−1(f(2))−→ N n.

Recalling that ν−1(f (2)) = fvN we now get

dimN (ker(f (2))) := dimN (ν−1(ker(f (2))))

= dimN (ker(ν−1(f (2))))

= dimN (ker(fvN ))
= dimN (ker(1⊗ f)),

and the proof is complete.

Corollary 3.6.2. [CS03] For the map f : (M ⊗M op)n → (M ⊗M op)m we have

β(f) = dimM ⊗̄Mop

(
TorM⊗Mop

1 (M ⊗̄M op, coker(f))
)
.

Proof. As in the above proof, we put N := M ⊗M op and N := M ⊗̄M op. Since f is a map
between free M ⊗M op-modules, the exact sequence

Nn f−→ Nm −→ coker(f) −→ 0,

may be extended to a resolution

· · · −→ N (Xl) fl−→ N (Xl−1)
fl−1−→ · · · · · · f3−→ N (X2) f2−→ Nn f−→ Nm,

of coker(f) by free N -modules. We now apply N ⊗ N− to this resolution and get

· · · −→ N ⊗ NN
(Xl) 1⊗fl−→ · · · · · · 1⊗f3−→ N ⊗ NN

(X2) 1⊗f2−→ N ⊗ NN
n 1⊗f−→ N ⊗ NN

m.

By definition of Tor, we have

TorN1 (N , coker(f)) =
ker(1⊗ f)
rg (1⊗ f2)

,

and by exactness of the free resolution we get

rg (1⊗ f2) = {
∑
i

Ti ⊗ f2(xi) | Ti ∈ N , xi ∈ N (X2)}

= {
∑
i

Ti ⊗ zi | Ti ∈ N , zi ∈ ker(f)}

= rg(1⊗ ι),

where ι as usual denotes the inclusion ker(f) ⊆ Nn. The claim now follows from Proposition 3.6.1.

Remark 3.6.3. Let, as before, ι denote the inclusion ker(f) ⊆ (M ⊗ M op) and consider the
complex

0 −→ M ⊗̄M op⊗M e ker(f) 1⊗ι−→ M ⊗̄M op⊗M e(M⊗M op)n
1⊗f−→ (M ⊗̄M op)⊗M e(M⊗M op)m −→ 0
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from the beginning of this section. Recall that fvN : (M ⊗̄M op)n → (M ⊗̄M op)m is the map
induced by 1 ⊗ f by applying the natural isomorphism αn (respectively αm) on the source-space
(respectively target-space) of 1⊗ f .
We have

αn(rg (1⊗ ι)) = αn{
∑
i

Ti ⊗ xi | Ti ∈ M ⊗̄M op, xi ∈ ker(f)}

= {
∑
i

Tixi | Ti ∈ M ⊗̄M op, xi ∈ ker(f)}.

Thus, αn(rg (1⊗ι)) is the sub-module in (M ⊗̄M op)n generated by elements of the form Tx, where
x ∈ ker(f) and T ∈ M ⊗̄M op. We denote this submodule by [M ⊗̄M op · ker(f)].
In this notation, the last equation in Proposition 3.6.1 now has the form:

β(f) = dimM ⊗̄Mop

( ker(fvN )
[M ⊗̄M op · ker(f)]

)
.

This description of β(f) will turn out practical later.

The following two results are not of particular importance at the moment, but they will be
needed in the following section. We present them here, to avoid to many digressions later.

Lemma 3.6.4. [CS03] For any finite subset E ⊆ L2(M ) and any ε > 0, there exists a projection
p ∈ M such that for every ξ ∈ E we have

pξ ∈ ητ (M ) and ‖pξ − ξ‖2 ≤ ε.

We omit the proof, since it requires some techniques from the theory of unbounded operators,
not available within the context of this text. See e.g. [CS03] Lemma 2.15.

Proposition 3.6.5. [CS03] Let W denote the algebraic tensor product L2(M )⊗L2(M op) and let
”over-lining” denote closure in the norm from L2(M )⊗̄L2(M op) = L2(M ⊗̄M op). Then

ker(f (2)) ∩Wn = ker(f),

and hence

β(f) = dimM ⊗̄Mop(ker(f (2)))− dimM ⊗̄Mop(ker(f (2)) ∩Wn).

Proof. By definition of β(f), the second equality follows from the first.
To prove the first identity, we note that ker(f) = ker(f (2)) ∩ (M ⊗M op)n and since

(M ⊗M op)n ⊆ (L2(M )⊗L2(M op))n =: Wn,

the inclusion ”⊇” is clear.
For the opposite inclusion, we consider an arbitrary vector ξ ∈ ker(f (2)) ∩Wn and let ε > 0 be
given. We then need to find a vector ξ′ ∈ ker(f (2)) ∩ (M ⊗M op)n such that ‖ξ − ξ′‖2 < ε.
Since ξ ∈ Wn, it has the form (ξ1, . . . , ξn) with ξ1, . . . , ξn ∈ W . Each ξi therefore has the form∑
j ξij⊗ηij with ξij ∈ L2(M ) and ηij ∈ L2(M op). Note, that for any pair of projections p, q ∈ M
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we have

‖p⊗ qopξ − ξ‖2 =

√√√√ n∑
i=1

‖p⊗ qopξi − ξi‖2
2

≤
n∑
i=1

‖p⊗ qopξi − ξi‖2

≤
n∑
i=1

∑
j

‖pξij ⊗ qopηij − ξij ⊗ ηij‖2

=
n∑
i=1

∑
j

‖pξij ⊗ qopηij − ξij ⊗ qopηij + ξij ⊗ qopηij − ξij ⊗ ηij‖2

≤
n∑
i=1

∑
j

‖(pξij − ξij )⊗ qopηij‖2 + ‖ξij ⊗ (qopηij − ηij )‖2

=
n∑
i=1

∑
j

‖pξij − ξij‖2‖qopηij‖2 + ‖ξij‖2‖qopηij − ηij‖2

Therefore, by applying Lemma 3.6.4 on {ξij |i, j} and {ηij |i, j} respectively, we may find two
projections p, q ∈ M such that p⊗ qopξ ∈ (M ⊗M op)n and ‖p⊗ qopξ − ξ‖2 < ε.
Since f (2) is M ⊗̄M op-linear, we get

f (2)(p⊗ qopξ) = p⊗ qopf (2)(ξ) = 0,

and hence p ⊗ qopξ ∈ (M ⊗M op)n ∩ ker(f (2)) = ker(f). Thus, ξ′ := p ⊗ qopξ has the desired
properties.

3.7 The first Betti number — Part II

We now return to the problem of computing the first Betti number. Consider again a finite subset
F = {x1, . . . , xn} ⊆ M . Recall, that we defined C1(F ) := (M e)⊗ spanC(F ) and a map

C1(F ) 3 T ⊗ x dF7−→ T (x⊗ 1− 1⊗ xop) ∈ M e,

which is the restriction of b1 to C1(F ) ⊆ C1(M ,M e). Applying the functor (M ⊗̄M op)⊗M e−
we get

1⊗ dF : (M ⊗̄M op)⊗M e(M e)⊗ spanC(F ) −→ (M ⊗̄M op)⊗M e(M e),

and we denote by dvNF : M ⊗̄M op ⊗ spanC(F ) → M ⊗̄M op the map induced by 1⊗ dF under the
natural identification of (M ⊗̄M op)⊗M e(M e) with M ⊗̄M op. (see e.g. section 3.6)
Let l denote the linear dimension of spanC(F ) and choose a linear basis xi1 , . . . , xil consisting of
elements in F . Note, that M ⊗̄M op ⊗ spanC(F ) is isomorphic to (M ⊗̄M op)l via the map

T ⊗ (
l∑

j=1

µjxij )
α−→ (µ1T, . . . , µlT ),

and note also that

dvNF ◦ α−1(S1, . . . , Sl) =
l∑

j=1

Sj(xij ⊗ 1− 1⊗ xop
ij

). (†)
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In the following, we will often suppress the isomorphism α and simply identify M ⊗̄M op⊗spanC(F )
with (M ⊗̄M op)l. In exactly the same manner, we get an isomorphism

C1(F ) := M ⊗M op ⊗ spanC(F ) ∼−→ (M ⊗M op)l,

which will also be suppressed in the following. In particular, we will consider dF as a map from
(M ⊗M op)l −→ M ⊗M op. With these identifications, we have

β(F ) = β(dF ),

by Proposition 3.6.1. (see e.g. the discussion preceding Lemma 3.5.1).
This allows us to apply the results from Section 3.6. In particular, using the notation from Remark
3.6.3, we have

β(F ) = dimM ⊗̄Mop

( ker(dvNF )
[M ⊗̄M op · ker(dF )]

)
.

Throughout this section, we shall make extensive use of the isomorphism Ψ from L2(M )⊗̄L2(M op)
to HS (L2(M )) introduced in Section 1.2.2.We first study its interaction with the map dF .

Lemma 3.7.1. Denote by Ψl the isomorphism

(Ψ, . . . ,Ψ) : (L2(M )⊗̄L2(M op))l −→ (HS (L2(M )))l.

Then, for (T1, . . . , Tl) ∈ Ψl((M ⊗M op)l), we have

Ψ ◦ dF ◦Ψ−1
l (T1, . . . , Tl) =

l∑
j=1

[Jx∗ijJ, Tj ],

where J : L2(M ) → L2(M ) is the conjugation from Lemma 1.2.1.

Proof. By assumption, each Tj can be written as Ψ(Sj) for some Sj ∈ M ⊗M op. Write Sj as∑
k∈Ij

mjk ⊗ nop
jk

, for some finite index-set Ij and some mjk , njk ∈ M . The result now follows
from a direct computation:

Ψ ◦ dF ◦Ψ−1
l (T1, . . . , Tl) = Ψ(

l∑
j=1

Sj ⊗ (xij ⊗ 1− 1⊗ xop
ij

)) (By (†))

= Ψ(
l∑

j=1

∑
k∈Ij

mjk ⊗ n
op
jk

(xij ⊗ 1− 1⊗ xop
ij

))

=
l∑

j=1

∑
k∈Ij

Jx∗ijJΨ(mjk ⊗ n
op
jk

)−Ψ(mkj
⊗ nop

kj
)Jx∗ijJ (Prop. 1.2.15)

=
l∑

j=1

Jx∗ijJ(
∑
k∈Ij

Ψ(mjk ⊗ n
op
jk

))− (
∑
k∈Ij

Ψ(mjk ⊗ n
op
jk

))Jx∗ijJ

=
l∑

j=1

[Jx∗ijJ, Tj ].

Definition 3.7.2. We denote by DF : HS (L2(M ))l → HS (L2(M )) the map

(T1, . . . , Tl) 7−→
l∑

j=1

[Jx∗ijJ, Tj ].
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The map dvNF : (M ⊗̄M op)l → (M ⊗̄M op) extends dF when M ⊗ M op is considered as
subspace of M ⊗̄M op in the natural way. Since dvNF is M ⊗̄M op-linear, it (and hence dF ) extends
to a bounded M ⊗̄M op-equivariant opeartor d(2)

F : L2(M ⊗̄M op)l → L2(M ⊗̄M op). By the proof
of Theorem 1.2.14, the algebraic tensor product M⊗M op is dense in L2(M ⊗̄M op) and combining
this with the result in Lemma 3.7.1 we get commutativity of the following diagram

L2(M ⊗̄M op)l
Ψl //

d
(2)
F

��

HS (L2(M ))l

DF

��
L2(M ⊗̄M op)

Ψ
// HS (L2(M ))

We now aim to prove a formula, relating the dimension of ker(dvNF ) to β(2)
0 (M , τ). (Proposition

3.7.6) For this we need the follwing two lemmas.

Lemma 3.7.3. For fixed S ∈ HS (L2(M )) the operator

(B(L2(M )))1 3 T 7−→ [T, S] ∈ HS (L2(M )),

is continuous from (B(L2(M )))1 with the strong-∗-topology, to HS (L2(M )) with the topology
induced by the Hilbert-Schmidt norm.

Proof. By linearity, it suffices to prove the continuity at zero. So, let (Tα) be a net in (B(L2(M )))1
converging to zero in the strong-∗-topology. We need to prove that [Tα, S] converges to zero in
Hilbert-Schmidt norm.
Let ε > 0 be given. Since FR(L2(M )) is dense in HS (L2(M )) there exists a vector

∑n
i=1 xi⊗yi ∈

L2(M )⊗L2(M op) such that ‖S −
∑n
i=1 Ψxi⊗yi

‖HS < ε
4 . Let X denote the finite rank operator∑n

i=1 Ψxi⊗yi
. We then get

‖[Tα, S]‖HS = ‖[Tα, S −X +X]‖HS

= ‖[Tα, S −X] + [Tα, X]‖HS

≤ ‖Tα(S −X)‖HS + ‖(S −X)Tα‖HS + ‖[Tα, X]‖HS

≤ ‖Tα‖∞‖S −X‖HS + ‖S −X‖HS ‖Tα‖∞ + ‖[Tα, X]‖HS

≤ ε

4
+
ε

4
+ ‖[Tα, X]‖HS .

Note, that for any i ∈ {1, . . . , n} and ξ ∈ L2(M ) we have

TαΨxi⊗yi(ξ) = Tα(〈ξ |Jyi〉xi) = 〈ξ |Jyi〉Tαxi = Ψ(Tαxi)⊗yi
(ξ)

Ψxi⊗yiTα(ξ) = 〈Tαξ |Jyi〉xi = 〈ξ |T ∗Jyi〉xi = Ψxi⊗(JT∗αJyi)(ξ).
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From this it follows that

‖[Tα, X]‖HS ≤
n∑
i=1

‖[Tα,Ψxi⊗yi
]‖HS

≤
n∑
i=1

‖TαΨxi⊗yi
‖HS + ‖Ψxi⊗yi

Tα‖HS

=
n∑
i=1

‖Ψ(Tαxi)⊗yi
‖HS + ‖Ψxi⊗(JT∗αJyi)‖HS

=
n∑
i=1

‖(Tαxi)⊗ yi‖2 + ‖xi ⊗ (JT ∗αJyi)‖2 (Ψ isometric)

=
n∑
i=1

‖Tαxi‖2‖yi‖2 + ‖xi‖2‖JT ∗αJyi‖2

≤ sup
i
{‖xi‖2, ‖yi‖2}

( n∑
i=1

‖Tαxi‖2 + ‖T ∗α(Jyi)‖2

)
≤ sup

i
{‖xi‖2, ‖yi‖2}

( n∑
i=1

‖Tαxi‖2 + ‖T ∗αxi‖2 + ‖Tα(Jyi)‖2 + ‖T ∗α(Jyi)‖2

)

Since (Tα) converges to zero in the strong-∗-topology, the sum in the last expression converges to
zero. Hence, there exists an α0 such that

sup
i
{‖xi‖2, ‖yi‖2}

( n∑
i=1

‖Tαxi‖2 + ‖T ∗αxi‖2 + ‖Tα(Jyi)‖2 + ‖T ∗α(Jyi)‖2

)
<
ε

2
,

when α ≥ α0. This completes the proof.

Lemma 3.7.4. Let N be any von Neumann algebra and let J be a strongly closed left ideal in
N . Then J has the form N p for some projection p ∈ N . In particular J is projective, when
considered a left module over N .

Proof. If J = {0} there is nothing to prove. So assume that J is non-trivial and choose a
non-zero vector x ∈ J . Then x∗x is also a non-zero element in J and since J is an ideal every
polynomial expression, without constant term, in x∗x is in J . Because J is strongly (especially
uniformly) closed we get f(x∗x) ∈ J for every f ∈ C(σ(x∗x)) with f(0) = 0.
Since x∗x is non-zero, we can find an ε > 0 such that e := χA(x∗x) 6= 0 where A = [ε, ‖x‖2] ∩
σ(x∗x). The characteristic function χA can be approximated pointwise by a (uniformly) bounded
sequence of continuous functions (fn)n∈N with fn(0) = 0 and hence fn(x∗x) ∈ J converges
strongly to e. By hypothesis, J is strongly closed and hence e ∈ J .
This shows that J contains non-trivial projections and we now define p to be the union of all
projections in J and aim to show that p has the desired property.
We first show that p belongs to J . Since J is strongly closed, it suffices to prove that each
finite union of projections in J also belongs to J and an easy induction-argument reduces the
problem to the case of two projections.

So, let p, q ∈ J be projections, and recall that p ∨ q = R(p+ q), where R(p+ q) denotes the
range-projection of the (positive) operator x := p+ q. (see e.g. [KR1] Proposition 2.5.14)
We need to prove that R(x) ∈ J . Since R(x) = R( 1

‖x‖x) we may assume that ‖x‖ ≤ 1 such that
x ≤ 1.
We now prove that (x

1
n )n∈N converges strongly to R(x). This is sufficient since J is stable
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under continuous functional calculus from {f ∈ C(σ(x))|f(0) = 0} by what is already proven and
strongly closed by assumption. By considering the corresponding functions on [0, 1], it is easy to
see that (x

1
n )n∈N is an increasing sequence of positive operators bounded from above by 1 and it

therefore converges strongly to its least upper bound q.
Since (x

1
n )n∈N is a bounded sequence of pairwise commuting elements, each element in the sequence

commutes with q and from this it follows that the squared sequence (x
2
n )n∈N converges strongly

to q2. But since (x
2
n )n∈N contains (x

1
n )n∈N as a subsequence (the even terms), we conclude that

q2 = q.
Each x

1
n is self-adjoint and since the sequence (x

1
n )n∈N converges weakly to q, it follows that q is

self-adjoint — and hence a projection.
We now need to see that q is the range-projection of x. Since x is self-adjoint, we see that

ker(x)⊥ = rg(x∗) = rg(x),

and hence it suffices to prove that ker(q) = ker(x).
Assume first that xξ = 0 and consider a fixed n ∈ N. Since the function f : t 7→ t

1
n has f(0) = 0,

it can be approximated uniformly by a sequence of polynomials without constant terms; i.e. of
the form t 7→ pk(t)t for some polynomial sequence (pk)k∈N. So, if xξ = 0 we have pk(x)xξ = 0 for
all k ∈ N and hence x

1
n ξ = 0. Since this holds for every n ∈ N and q is the strong operator limit

of (x
1
n )n∈N, we conclude that qξ = 0.

Conversely, assume that qξ = 0. Then, since q dominates each x
1
n , we get

0 = 〈qξ |ξ〉 ≥ 〈x 1
2 ξ |ξ〉 = 〈x 1

4 ξ |x 1
4 ξ〉 = ‖x 1

4 ξ‖2,

and hence
xξ = x

1
4x

1
4x

1
4x

1
4 ξ = 0

Hence q is the range-projection of x and we conclude from this that J is stable under union of
projections. Thus, p ∈ J .

We now wish to see that J = N p. Since p ∈ J , the inclusion ”⊇” is clear. For the opposite
inclusion, we assume, towards a contradiction, that there exists some element x ∈ J \N p. Then
x− xp ∈ J is nonzero and we have

z := (x− xp)∗(x− xp) = (1− p)x∗x(1− p) ∈ J \ {0}.

Choose an ε > 0 such that χA(z) 6= 0 where A = [ε, ‖z‖]∩σ(z). Then, by what was proven above,
χA(z) ∈ J and we now prove that χA(z) ≤ 1 − p. Given this fact the proof is complete, since
χA(z) then is a non-zero projection in J orthogonal to p, contradicting the construction of p.
Since 0 is isolated from A, we may choose a uniformly bounded sequence (fn)n∈N ⊆ C(σ(z))
converging pointwise to χA and with the property that fn(0) = 0 for all n ∈ N.
Then each fn can be uniformly approximated by polynomials and since fn(0) = 0 we may choose
the polynomials of the form t 7→ pk(t)t. (i.e. without constant term)
Because of this (and the construction of z) we see that pk(z)z(1− p) = pk(z)z for each k ∈ N and
hence the same holds for the uniform limit fn(z). Since right-multiplication with a fixed operator
is strong-operator continuous, this implies that the strong limit χA(z) of the sequence fn(z) also
fulfills the relation

χA(z)(1− p) = χA(z),

and hence χA(z) ≤ 1− p. Since χA(z) 6= 0, this contradicts the choice of p.

Having these two lemmas at our disposal, we now return to the problem of computing the first
Betti number. So, let M be a finite von Neumann algebra, endowed with a fixed, faithful, nor-
mal, tracial state τ . In the following, the dimension dimM ⊗̄Mop(·) will always be computed with
respect to the tensor-trace τ ⊗ τop on M ⊗̄M op.
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Remark 3.7.5. Consider two finite subsets F,G ⊆ M and assume F ⊆ G.
Recall, from Section 3.5, that we defined ϕG,F to be the inclusion C1(F ) ⊆ C1(G).
If we apply the functor M ⊗̄M op ⊗M e−, we get an induced map

1⊗ϕG,F : M ⊗̄M op ⊗MeC1(F ) −→ M ⊗̄M op ⊗M eC1(G).

Applying the natural isomorphism M ⊗̄M op ⊗ M eM e ∼−→ M ⊗̄M op on both source- and target
space of 1⊗ϕG,F , identifies 1⊗ϕG,F with the inclusion

M ⊗̄M op ⊗ spanC(F ) ⊆ M ⊗̄M op ⊗ spanC(G).

To avoid getting the notation to cumbersome, we will denote also the latter inclusion by ϕG,F in
stead of ϕG,F vN , which would be more consistent with the notation introduced so far.

In the rest of this section, we shall primarily consider self-adjoint3 finite subsets of M . Note,
that if F ⊆ M is self-adjoint then the algebra generated by F is automatically a (possibly non-
unital) ∗-subalgebra of M .

Proposition 3.7.6. [CS03] Let F = {x1, . . . , xn} be a finite, self-adjoint subset of M and let A
denote the algebra generated by F . Assume that A contains the unit of M and is strongly dense
in M . If G is another finite self-adjoint subset containing F , then

dimM ⊗̄Mop(ϕG,F (ker(dvNF ))) = l − 1 + β
(2)
0 (M , τ),

where l denote the linear dimension of spanC(F ).

Proof . The general situation follows from the special case F = G, since ϕG,F is injective and
hence an isomorphism of M ⊗̄M op-modules from ker(dvNF ) to ϕG,F (ker(dvNF )).
So, we may assume F = G. We then need to show

dimM ⊗̄Mop(ker(dvNF )) = l − 1 + β
(2)
0 (M , τ). (†)

Recall, that the zero’th L2-homology of M can be computed as the zero’th homology of the
Hochschild complex (C∗(M ,M ⊗̄M op), b∗). That is, H(2)

0 (M , τ) = M ⊗̄M op/rg (b1).
Using additivity of the dimension function on the associated short-exact sequence

0 −→ rg (b1) −→ M ⊗̄M op −→ H
(2)
0 (M , τ) −→ 0,

we get

β
(2)
0 (M , τ) : = dimM ⊗̄Mop(H(2)

0 (M , τ))
= dimM ⊗̄Mop(M ⊗̄M op)− dimM ⊗̄Mop(rg (b1))
= 1− dimM ⊗̄Mop(rg (b1)).

If we can show that

dimM ⊗̄Mop(rg (dvNF )) = dimM ⊗̄Mop(rg (b1)), (‡)

the desired formula follows, since (‡) implies that

β
(2)
0 (M , τ) = 1− dimM ⊗̄Mop(rg (b1))

= 1− dimM ⊗̄Mop(rg (dvNF ))

= 1−
(

dimM ⊗̄Mop(M ⊗̄M op ⊗ span(F ))− dimM ⊗̄Mop(ker(dvNF ))
)

= 1− (l − dimM ⊗̄Mop(ker(dvNF ))).

3I.e. for all xi ∈ F we have x∗i ∈ F
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We therefore aim to prove (‡). Since b1 is M ⊗̄M op-linear, its range is a left ideal in M ⊗̄M op.
We first prove that

rg(b1)
s
⊆ rg (b1)

alg
,

where the closure on the right-hand side is in the sense of Definition 1.1.8 (relative to M ⊗̄M op) and
the closure on the left-hand side is in the strong operator topology on M ⊗̄M op ⊆ B(L2(M ⊗̄M op)).
Let f : M ⊗̄M op → M ⊗̄M op be an M ⊗̄M op-linear map vanishing on rg(b1). Then f is given
by right-multiplication with f(1⊗1) and since multiplication from the right with a fixed operator
is strong-operator continuous, f vanishes on rg(b1)

s
. Since this holds for all such f , the inclusion

follows. We therefore get

dimM ⊗̄Mop(rg (b1)) ≤ dimM ⊗̄Mop(rg (b1)
s
) ≤ dimM ⊗̄Mop(rg (b1)

alg
),

and by continuity of the dimension function (Theorem 1.4.7), we the conclude that

dimM ⊗̄Mop(rg (b1)) = dimM ⊗̄Mop(rg (b1)
s
).

Since rg(b1)
s

is a strongly closed left ideal in M ⊗̄M op, Lemma 3.7.4 implies that rg (b1)
s

has the
form M ⊗̄M opp for a suitable projection p ∈ M ⊗̄M op.
A similar argument shows that

dimM ⊗̄Mop(rg (dvNF )) = dimM ⊗̄Mop(rg (dvNF )
s
),

and that rg(dvNF )
s

is of the form M ⊗̄M opq, for a suitable projection q ∈ M ⊗̄M op.
By the results of Chapter 1 (Theorem 1.3.17), it suffices to see that ν(M ⊗̄M opp, 〈·|·〉st) and
ν(M ⊗̄M opq, 〈·|·〉st) are isomorphic as finitely generated Hilbert M ⊗̄M op-modules.
By construction, rg (b1) is dense in M ⊗̄M opp in the strong operator topology, and hence also in
the topology induced from the norm on L2(M ⊗̄M op). Thus,

rg (b1)
L2

= M ⊗̄M opp
L2

= ν(M ⊗̄M opp, 〈·|·〉st),

and similarly

rg (bvNF )
L2

= M ⊗̄M opq
L2

= ν(M ⊗̄M opq, 〈·|·〉st).
We therefore have to show that

rg(dvNF )
L2

= rg(b1)
L2

.

Since b1 : M ⊗̄M op ⊗M → M ⊗̄M op is given by

T ⊗ a 7−→ T (a⊗ 1− 1⊗ aop),

rg (b1) is the left ideal in M ⊗̄M op generated by {a⊗ 1− 1⊗ aop | a ∈ M }.
We now wish to transport the problem from L2(M ⊗̄M op) into HS (L2(M )) via the isometry Ψ
from Proposition 1.2.12. For any T ∈ M ⊗̄M op and a ∈ M , we have

Ψ(T (a⊗ 1− 1⊗ aop)) = Ψ(T (a⊗ 1)− T (1⊗ aop)
= Ja∗JΨ(T )−Ψ(T )Ja∗J (by Proposition 1.2.15)
= [Ja∗J,Ψ(T )].

Since a 7→ Ja∗J maps M onto M ′ (Corollary 1.2.7) and since M ⊗̄M op is dense in L2(M ⊗̄M op),
we get

Ψ(rg(b1)
L2

) = span{[S,m′] | S ∈ HS (L2(M )),m′ ∈ M ′}
HS

.

Similarly, since dvNF = b1|C1(F ) we get that rg (dvNF ) is the left ideal in M ⊗̄M op, generated by the
set

{xi ⊗ 1− 1⊗ xop
i | xi ∈ F},
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and applying Ψ we get

Ψ(rg(dvNF )
L2

) = span{[S, Jx∗i J ] | S ∈ HS (L2(M )), xi ∈ F}
HS

.

Since Ψ(rg(dvNF )
L2

) ⊆ Ψ(rg(b1)
L2

), we just need to prove that

span{[S, Jx∗i J ] | S ∈ HS (L2(M )), xi ∈ F}

is Hilbert-Schmidt-dense in

span{[S,m′] | S ∈ HS (L2(M )),m′ ∈ M ′}.

Recall that F is assumed to generate M as a von Neumann algebra, so if A denotes the algebra
generated by F then M is the strong-∗-closure of A. Note, that by the Kaplansky density theorem
(see e.g. [Brat] Theorem 2.4.16), every m ∈ M is the strong-∗-limit of a bounded net in A.
For fixed S ∈ HS (L2(M )) the map

(B(L2(M )))1 3 T 7−→ [S, T ] ∈ HS (L2(M )),

is (strong-∗, Hilbert-Schmidt)-continuous by Lemma 3.7.3 and hence

span{[S, Ja∗J ] | S ∈ HS (L2(M )), a ∈ A}
HS

= span{[S,m′] | S ∈ HS (L2(M )),m′ ∈ M ′}
HS

.

It is thus sufficient to prove that

span{[S, Ja∗J ] | S ∈ HS (L2(M )), a ∈ A} = span{[S, Jx∗i J ] | S ∈ HS (L2(M )), xi ∈ F}.

To see this, we must prove that for all i1, . . . , ik ∈ {1, . . . , n} and S ∈ HS (L2(M )) we have

[S, (Jx∗i1 . . . x
∗
ik
J)] ∈ span{[T, Jx∗i J ] | T ∈ HS (L2(M )), xi ∈ F}.

For any S, y1, . . . , yk ∈ B(L2(M )) we have:

[S, y1 · · · yk] = [y2 · · · ykS, y1]
+ [y3 · · · ykSy1, y2]
+ [y4 · · · ykSy1y2, y3]

...
+ [Sy1 · · · yk−1, yk].

Put yj := Jx∗ijJ for j ∈ {1, . . . , k} and note that

y1 · · · yk = (Jx∗i1J)(Jx∗i2J) · · · (Jx∗ikJ) = J(x∗i1 · · ·x
∗
ik

)J.

Furthermore, for S ∈ HS (L2(M )) we have

yj . . . ykSy1 . . . yj−2 ∈ HS (L2(M )),

since HS (L2(M )) is a two-sided ideal. Thus

[S, (Jx∗i1 · · ·x
∗
ik
J)] ∈ span{[T, Jx∗i J ] | T ∈ HS (L2(M )), xi ∈ F},

as desired.

In the light of Proposition 3.7.6, we introduce the following notation.
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Definition 3.7.7. Let M be a finite von Neumann algebra with normal, faithful tracial state τ
and let F be a finite, self-adjoint subset of M , spanning a linear space of linear dimension l. For
any finite self-adjoint subset G containing F we define

• ∆(F ) := l − dimM ⊗̄Mop([M ⊗̄M op · ker(dF )]).

• ∆(G : F ) := l − dimM ⊗̄Mop

(
ϕG,F (ker(dvNF )) ∩ ([M ⊗̄M op · ker(dG)])

)
We place ourselves under the hypotheses of the above definition and assume moreover that the

algebra generated by F contains the unit of M and is strongly dense in M . We then have

β(F ) = β(dF )

= dimM ⊗̄Mop(ker(dvNF ))− dimM ⊗̄Mop([M ⊗̄M op · ker(dF )]) (Remark 3.6.3)

= l − 1 + β
(2)
0 (M , τ)− dimM ⊗̄Mop([M ⊗̄M op · ker(dF )]) (Proposition 3.7.6)

= ∆(F )− 1 + β
(2)
0 (M , τ).

Similarly we get

β(G : F ) = dimM ⊗̄Mop(ϕG,F∗ (H(F )))

= dimM ⊗̄Mop

( ϕG,F (ker(dvNF ))
ϕG,F (ker(dvNF )) ∩ [M ⊗̄M op · ker(dG)]

)
(Remark 3.5.4)

= dimM ⊗̄Mop(ϕG,F (ker(dvNF )))− dimM ⊗̄Mop(ϕG,F (ker(dvNF )) ∩ [M ⊗̄M op · ker(dG)])

= l − 1 + β
(2)
0 (M , τ)− dimM ⊗̄Mop(ϕG,F (ker(dvNF )) ∩ [M ⊗̄M op · ker(dG)])

= ∆(G : F )− 1 + β
(2)
0 (M , τ)

Also note, that

∆(F ) = l − dimM ⊗̄Mop(ker(dF )
L2

) = l − dimM ⊗̄Mop(ker(d(2)
F ∩ (L2(M )⊗L2(M ))l

L2

),

by the results of Proposition 3.6.1 and Proposition 3.6.5. This last formula of course holds whether
or not F generates a strongly dense algebra.

Definition 3.7.8. We shall call a von Neumann algebra M finitely generated, if there exists
a finite self-adjoint subset F , such that the algebra generated by F is strongly dense in M and
contains the unit of M . We will refer to such a subset F , as a finite generating subset of M .

In the case when M is finitely generated we also make the following definition.

Definition 3.7.9. Assume M to be finitely generated and let G denote the family of finite gen-
erating subsets of M . We then define

∆(M , τ) := sup
F∈G

inf
G∈G
F⊆G

∆(G : F ).

By repeating the argument from the proof of Proposition 3.5.2 we get

β
(2)
1 (M , τ) = sup

F∈G
inf
G∈G
F⊆G

β(G : F ),

in the case when M is finitely generated. Using this formula, we see that

β
(2)
1 (M , τ) = sup

F∈G
inf
G∈G
F⊆G

(
∆(G : F )− 1 + β

(2)
0 (M , τ)

)
= ∆(M , τ)− 1 + β

(2)
0 (M , τ).
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So, ∆(M , τ) measures the difference between β(2)
1 (M , τ) and β(2)

0 (M , τ). In particular, ∆(M , τ) =
1 implies β(2)

1 (M , τ) = β
(2)
0 (M , τ).

Proposition 3.7.10. [CS03] Let F be a finite, self-adjoint subset of M and assume that A (the
algebra generated by F ) contains the unit of M .
Then ∆(F ) only depends on the algebra A and the restriction of the trace τ to A.

Proof. Let N be the strong closure of A inside M and endow N with the trace-state arising from
the restriction of τ . We need to prove that we get the same ∆(F )-value, whether we compute it
relative to M or relative to N . To avoid confusion, we will decorate the relevant notation with a
sub-script indicating which von Neumann algebra it is constructed with respect to. For instance,
∆M (F ) will denote the ∆-quantity of F computed relative to M and ∆N (F ) will denote the
∆-quantity of F computed relative to N . Similar notation will be used for β(F ) and dvNF .
Applying Proposition 3.7.6 to the pair (N , τ), gives

dimN ⊗̄N op(ker(dvNF,N )) = l − 1 + β
(2)
0 (N , τ),

where l is the linear dimension of spanC(F ). We now consider the exact sequence

0 −→ ker(dvNF,N ) ι−→ N ⊗̄N op ⊗ spanC(F )
dvN

F,N−→ N ⊗̄N op.

By Theorem 1.5.1, the induced sequence

0

��
M ⊗̄M op ⊗N ⊗̄N op ker(dvNF,N )

1⊗ι
��

M ⊗̄M op ⊗N ⊗̄N opN ⊗̄N op ⊗ span(F )

1⊗dvN
F,N

��
M ⊗̄M op ⊗N ⊗̄N opN ⊗̄N op,

is still exact and

dimM ⊗̄Mop(ker(1⊗dvNF,N )) = dimM ⊗̄Mop

(
(M ⊗̄M op)⊗N ⊗̄N op ker(dvNF,N )

)
= dimN ⊗̄N op(ker(dvNF,N ))

The natural isomorphism M ⊗̄M op⊗N ⊗̄N opN ⊗̄N op ' M ⊗̄M op identifies 1⊗dvNF,N with dvNF,M
and hence

dimM ⊗̄Mop(ker(dvNF,M )) = dimN ⊗̄N op(ker(dvNF,N )).

From this we get

βM (F ) = dimM ⊗̄Mop(ker(dvNF,M ))− dimM ⊗̄Mop([M ⊗̄M op · ker(dF,M )]) (Remark 3.6.3)

= dimN ⊗̄N op(ker(dvNF,N ))− dimM ⊗̄Mop([M ⊗̄M op · ker(dF,M )])

= l − 1 + β
(2)
0 (N , τ)− dimM ⊗̄Mop([M ⊗̄M op · ker(dF,M )]) (Proposition 3.7.6)

= ∆M (F )− 1 + β
(2)
0 (N , τ),

and hence

∆M (F ) = βM (F ) + 1− β
(2)
0 (N , τ). (†)
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From Lemma 3.5.1 and Proposition 3.6.2 we have

βM (F ) = β(dF,M ) = dimM ⊗̄Mop TorM e

1 (M ⊗̄M op,M e ⊗ AeA),

and we now claim that

TorM e

1 (M ⊗̄M op,M e ⊗ AeA) ' M ⊗̄M op ⊗N ⊗̄N op TorN e

1 (N ⊗̄N op,N e ⊗ AeA).

To see this, we choose a resolution (Fn, fn) of N e⊗AeA by free N e-modules. Then the complex

(N ⊗̄N op ⊗N eF∗ , 1⊗ f∗)

computes TorN e

∗ (N ⊗̄N op,N e ⊗ AeA). If we apply the functor M ⊗̄M op ⊗ N ⊗̄N op− to this
complex, we arrive at

(M ⊗̄M op ⊗N ⊗̄N opN ⊗̄N op ⊗N eF∗ , 1⊗ 1⊗ f∗), (∗)

and since M ⊗̄M op⊗N ⊗̄N op− is exact, (Theorem 1.5.1) the first homology of the complex (∗) is
(see e.g. [CE] Ch. IV, Thm. 7.2)

M ⊗̄M op ⊗N ⊗̄N op TorN e

1 (N ⊗̄N op,N e ⊗ AeA).

We now wish to identify this module with TorM e

1 (M ⊗̄M op,M e ⊗ AeA).
If we apply the exact functor M e ⊗N e− (see e.g. Remark 1.5.2) to the free resolution (Fn, fn),
the resulting complex is a resolution of

M e ⊗N eN e ⊗ AeA ' M e ⊗ AeA,

by free M e-modules. So, if we apply the functor M ⊗̄M op ⊗ M e− to this resolution, the first
homology of the resulting complex

(M ⊗̄M op ⊗M eM e ⊗N eFn , 1⊗ 1⊗ fn), (∗∗)

is
TorM e

1 (M ⊗̄M op,M e ⊗ AeA).

One easily checks, that the both (∗) and (∗∗) are isomorphic to the complex

(M ⊗̄M op ⊗N eF∗ , 1⊗ f∗),

and we conclude that

TorM e

1 (M ⊗̄M op,M e ⊗ AeA) ' M ⊗̄M op ⊗N ⊗̄N op TorN e

1 (N ⊗̄N op,N e ⊗ AeA).

Using Theorem 1.5.1, we now get

βM (F ) = dimM ⊗̄Mop(TorM e

1 (M ⊗̄M op,M e ⊗ AeA))

= dimM ⊗̄Mop(M ⊗̄M op ⊗N ⊗̄N op TorN e

1 (N ⊗̄N op,N e ⊗ AeA))

= dimN ⊗̄N op TorN e

1 (N ⊗̄N op,N e ⊗ AeA)
= βN (F ).

Hence

∆M (F ) = βM (F ) + 1− β
(2)
0 (N , τ) (by (†))

= βN (F ) + 1− β
(2)
0 (N , τ)

= ∆N (F ),
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as desired.

Note, that we also proved βM (F ) = βN (F ) in the last part of the proof of Proposition 3.7.10,
so that also β(F ) is independent of the choice of von Neumann algebra, relative to which it is
computed.

Recall, that M denotes a finite von Neumann algebra, endowed with a normal, faithful, tracial
state τ .

Theorem 3.7.11. [CS03] Let F be a finite, self-adjoint subset of M , generating an algebra A
which contains the unit of M . Assume furthermore, that F contains a (normal) element x with
diffuse spectrum, such that x or x∗ commutes with every other element in F . Then ∆(F ) = 1.

Proof. Since x is normal, Fugledes Theorem (see e.g. [MV] Theorem 17.23) implies that if x
commutes with F then so does x∗; and vice versa. So, in either case, both x and x∗ commutes
with F .
Let N be the strong closure of A in M . By Proposition 3.7.10, we may compute ∆(F ) and β(F )
relative to (N , τ). Since F obviously generates N , the remarks preceding Proposition 3.7.10
implies that

∆(F ) := β(F ) + 1− β
(2)
0 (N , τ).

Since σ(x) is diffuse, Theorem 3.3.5 implies that β(2)
0 (N , τ) = 0 and hence we have ∆(F ) ≥ 1.

The opposite inequality requires a bit more work:
Let l denote the linear dimension of spanC(F ) and choose a basis {x1, . . . , xl} containing x, con-
sisting of elements from F . Assume without loss of generality that x = x1.
We now consider N in its GNS-representation on L2(N , τ) =: L2(N ) and let J denote the
conjugation operator on L2(N ).
Let y2, . . . , yl ∈ FR(L2(N , τ)) be arbitrary operators and define si := [yi, Jx∗J ] for i ∈ {2, . . . , l}
and s := −

∑l
i=2[yi, Jx

∗
i J ]. Put x̃i := Jx∗i J for all i ∈ {1, . . . , l}. Since F ∗ = F and x∗ commutes

with F we have

[x̃i, x̃] := Jx∗i JJx
∗J − Jx∗JJx∗i J = Jx∗i x

∗J − Jx∗x∗i J = Jx∗x∗i J − Jx∗x∗i J = 0,

for any i ∈ {2, . . . , l} and using the Jacobi identity we now get

0 = [[yi, x̃], x̃i] + [[x̃i, yi], x̃] + [[x̃, x̃i], yi] = [[yi, x̃], x̃i] + [[x̃i, yi], x̃].

Since this holds for any i ∈ {2, . . . , n}, we have

[s, x̃] +
n∑
i=2

[si, x̃i] =
l∑
i=2

[−[yi, x̃i], x̃] + [si, x̃i]

=
l∑
i=2

[−[yi, x̃i], x̃] + [[yi, x̃], x̃i]

=
l∑
i=2

[[x̃i, yi], x̃] + [[yi, x̃], x̃i]

= 0.

This shows, that (s, s2, . . . , sl) ∈ ker(DF ) ∩FR(L2(N ))l. 4

Define Φ : HS (L2(N ))l−1 −→ HS (L2(N ))l by

Φ : (y2, . . . , yl) 7−→ (−
l∑
i=2

[yi, x̃i], [y2, x̃], . . . , [yl, x̃]),

4See e.g. Definition 3.7.2 and the remarks following it
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and note that Φ is Hilbert-Schmidt continuous. This follows from the fact, that for every a, b ∈
B(L2(N )) and y ∈ HS (L2(N )) we have ‖ayb‖HS ≤ ‖a‖∞‖y‖HS ‖b‖∞, such that each of the
commutators appearing in the definition of Φ is Hilbert-Schmidt continuous.
By what was just proven, we get

Φ(HS (L2(N ))l−1) = Φ(FR(L2(N ))l−1
HS

) ⊆ ker(DF ) ∩FR(L2(N ))l
HS

. (†)

We now consider HS (L2(N )) as a left Hilbert N ⊗̄N op-module, with respect to the action

T · y := Ψ(TΨ−1(y)), for T ∈ N ⊗̄N op, y ∈ HS (L2(N )),

and HS (L2(N ))k (k ∈ {l−1, l}) as a left N ⊗̄N op-Hilbert module with respect to the associated
diagonal action. Note, that if T = a⊗ bop ∈ N ⊗N op then T · y = ayb by Proposition 1.2.15.
We now prove that Φ is N ⊗̄N op-equivariant. For a, b ∈ N we have

[ayib, x̃i] = ayibx̃i − x̃iayib = ayix̃ib− ax̃iyib = a[yi, x̃i]b,

and from this it follows that Φ is equivariant with respect to the action of N ⊗N op. Since Φ is
continuous and N ⊗N op is dense in N ⊗̄N op, it follows that Φ is N ⊗̄N op-equivariant.
Next we show that Φ is injective.
Let N0 denote the von Neumann algebra generated by x̃ := Jx∗J in B(L2(N )). Since x is normal
we have

ker(λ1− x) = ker(λ̄1− x∗) for any λ ∈ C,
and since x is assumed to have diffuse spectrum, we see that also x∗ has diffuse spectrum. Using
this, it is not hard to show that also x̃ = Jx∗J has diffuse spectrum and by Remark 3.3.7 this
implies that N ′

0 intersects trivially with the compact operators on L2(N ).
Since Hilbert-Schmidt operators in particular are compact, we conclude from this that Φ is injec-
tive.

We are now in position to prove the equality ∆(F ) ≤ 1. Note first, that both rg(Φ)
HS

and

ker(DF ) ∩FR(L2(N ))l
HS

are finitely generated Hilbert N ⊗̄N op-modules. By what was proven

above, Φ is a weak isomorphism from HS (L2(N ))l−1 to rg(Φ)
HS

and since ν−1 preserves weak
exactness (Lemma 1.4.6) we get a weak isomorphism

ν−1(Φ) : ν−1(HS (L2(N ))l−1) −→ ν−1(rg (Φ)
HS

).

By continuity of the dimension function (Theorem 1.4.7 part 3.) we therefore have

dimN ⊗̄N op(HS (L2(N ))l−1) : = dimN ⊗̄N op(ν−1(HS (L2(N )l−1)))

= dimN ⊗̄N op(ν−1(rg (Φ)
HS

))

=: dimN ⊗̄N op(rg (Φ)
HS

).

Since rg(Φ)
HS

is a finitely generated Hilbert N ⊗̄N op-submodule in ker(DF ) ∩FR(L2(N ))l
HS

(see the inclusion (†)) we now have

dimN ⊗̄N op(ker(DF ) ∩FR(L2(N ))l
HS

) ≥ dimN ⊗̄N op(rg (Φ)
HS

)

= dimN ⊗̄N op(HS (L2(N )l−1)

= dimN ⊗̄N op(L2(N ⊗̄N op)l−1)
= l − 1. (‡)

Since Ψ maps L2(N )⊗L2(N op) onto FR(L2(N )), the restriction of Ψl := (Ψ, . . . ,Ψ) gives rise
to an isomorphism: (see the discussion following Definition 3.7.2)

ker(d(2)
F ) ∩ (L2(N )⊗L2(N op))l

L2
∼−→ ker(DF ) ∩FR(L2(N ))l

HS
,
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and by Proposition 3.6.5 we have

ker(d(2)
F ) ∩ (L2(N )⊗L2(N op))l

L2

= ker(dF )
L2

.

Combining this with the inequality (‡) above yields

dimN ⊗̄N op(ker(dF )
L2

) ≥ l − 1.

Using Proposition 3.6.1 we now have

∆(F ) = l − dimN ⊗̄N op(ker(dF )
L2

) ≤ l − (l − 1) = 1,

and since the opposite inequality is already proven we have ∆(F ) = 1.

As a consequence we get the following.

Corollary 3.7.12. [CS03] Let M be a finitely generated von Neumann algebra, endowed with
a faithful, normal, tracial state τ . Assume furthermore that M contains a central element with
diffuse spectrum. Then ∆(M , τ) = 1 and β(2)

1 (M , τ) = 0.

Proof. Let F be a finite generating subset of M (in the sense of Definition 3.7.8) and consider
the set G := F ∪ {x, x∗}, where x is the central element with diffuse spectrum. Then G is also
self-adjoint and generating and fulfills the requirements of Theorem 3.7.11. Thus, ∆(G) = 1.
From this we get

∆(G : F ) = β(G : F ) + 1− β
(2)
0 (M , τ)

≤ β(G) + 1− β
(2)
0 (M , τ) (Remark 3.5.4)

= ∆(G)
= 1.

If G denotes the family of finite generating subsets of M , we therefore have

inf
G∈G
F⊆G

∆(G : F ) ≤ 1.

Since F ∈ G was arbitrary, we get

∆(M , τ) := sup
F∈G

inf
G∈G
F⊆G

∆(G : F ) ≤ 1.

Recall that 1 − ∆(M , τ) = β
(2)
0 (M , τ) − β

(2)
1 (M , τ) by the observations preceding Proposition

3.7.10. Since M contains an element with diffuse spectrum, β(2)
0 (M , τ) = 0 and hence

0 ≤ β
(2)
1 (M , τ) = ∆(M , τ)− 1.

Since we proved ∆(M , τ) ≤ 1, we conclude from this that ∆(M , τ) = 1 and β(2)
1 (M , τ) = 0.

Remark 3.7.13. Let m denote the Lebesgue measure on [0, 1] and consider the multiplication
algebra M := {Mf |f ∈ L∞([0, 1],m)} in B(L2([0, 1],m)).
Endow M with at faithful, normal, tracial state τ and let id denote the identity-function t 7→ t on
[0, 1]. Note that {Mid, 1} is a finite generating subset of M and that

σ(Mid) = essrg(id) = rg(id) = [0, 1].
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The spectral measure E for Mid is given by

B([0, 1]) 3 A 7−→MχA
∈ {Mf |f ∈ L∞([0, 1],m)}.

(see e.g. [MV] Example 18.11 for a proof that this is the right spectral measure)
In particular, it can not have atoms since for any g ∈ L2([0, 1],m) and λ ∈ [0, 1] we have

‖E({λ})g‖2
2 =

∫ 1

0

|χ{λ}g|2dm =
∫
{λ}

|g|2dm = 0.

From Corollary 3.7 we conclude that β(2)
1 (M , τ) = 0. (Compare e.g. with [CS03] Corollary 5.4)
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List of Notation

Sets P(X) The family of subsets of a set X.
Pe(X) The family of finite subsets of a set X.
B(X) The Borel σ-algebra on a topological space X.
C(X) The continuous functions on a topological space X.

Rings R A unital ∗-ring.
& Rn The direct sum of n copies of a ring R.
Modules R(X) The free R-module with generators the elements of the set X.

Mod(R) The category of left R-modules.
〈ri|i ∈ I〉 The left ideal in R generated by (ri)i∈I .
X ⊗ RY The tensor product of R-modules.
'R Isomorphism of R-modules.
CG The group-algebra of a discrete group G.

Hilbert Spaces H ,K Hilbert spaces.
& B(H ) All bounded operators on H .
Operator FR(H ) The finite rank operators on H
Algebras HS (H ) The Hilbert Schmidt operators on H .

H ⊗̄K The tensor product of Hilbert spaces.
M ,N von Neumann algebras
M ⊗̄N The tensor products of von Neumann algebras.
M+ The positive cone in M .
(M )1 The unit ball of M .
Mn(M ) n× n-matrices over M .
N (G) The group von Neumann algebra of a discrete group G.

Operators σ(T ) Spectrum of an operator.
|T | Absolute value of T (=

√
T ∗T ).

ker(T ) The kernel of T .
rg (T ) The range of T .
coker(T ) The cokernel of T .
R(T ) The range-projection of T .
N(T ) The null-projection of T .
‖T‖∞ The operator norm of T .
AdU The map T 7→ U∗TU on B(H ), for a unitary U ∈ B(H ).


